MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoptsub Structured version   Visualization version   GIF version

Theorem xkoptsub 21969
Description: The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoptsub.x 𝑋 = 𝑅
xkoptsub.j 𝐽 = (∏t‘(𝑋 × {𝑆}))
Assertion
Ref Expression
xkoptsub ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))

Proof of Theorem xkoptsub
Dummy variables 𝑓 𝑔 𝑘 𝑛 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkoptsub.j . . . . 5 𝐽 = (∏t‘(𝑋 × {𝑆}))
2 xkoptsub.x . . . . . . . . 9 𝑋 = 𝑅
32topopn 21221 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
43adantr 473 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑋𝑅)
5 fconstg 6397 . . . . . . . . 9 (𝑆 ∈ Top → (𝑋 × {𝑆}):𝑋⟶{𝑆})
65adantl 474 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}):𝑋⟶{𝑆})
76ffnd 6347 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}) Fn 𝑋)
8 eqid 2778 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}
98ptval 21885 . . . . . . 7 ((𝑋𝑅 ∧ (𝑋 × {𝑆}) Fn 𝑋) → (∏t‘(𝑋 × {𝑆})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}))
104, 7, 9syl2anc 576 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∏t‘(𝑋 × {𝑆})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}))
11 simpr 477 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
1211snssd 4617 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑆} ⊆ Top)
136, 12fssd 6360 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}):𝑋⟶Top)
14 eqid 2778 . . . . . . . . . 10 X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)
158, 14ptbasfi 21896 . . . . . . . . 9 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
164, 13, 15syl2anc 576 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
17 fvconst2g 6793 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Top ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
1817adantll 701 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
1918unieqd 4723 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
2019ixpeq2dva 8276 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = X𝑛𝑋 𝑆)
21 eqid 2778 . . . . . . . . . . . . . 14 𝑆 = 𝑆
2221topopn 21221 . . . . . . . . . . . . 13 (𝑆 ∈ Top → 𝑆𝑆)
23 ixpconstg 8270 . . . . . . . . . . . . 13 ((𝑋𝑅 𝑆𝑆) → X𝑛𝑋 𝑆 = ( 𝑆𝑚 𝑋))
243, 22, 23syl2an 586 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 𝑆 = ( 𝑆𝑚 𝑋))
2520, 24eqtrd 2814 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = ( 𝑆𝑚 𝑋))
2625sneqd 4454 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} = {( 𝑆𝑚 𝑋)})
27 eqid 2778 . . . . . . . . . . . 12 𝑋 = 𝑋
28 fvconst2g 6793 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Top ∧ 𝑘𝑋) → ((𝑋 × {𝑆})‘𝑘) = 𝑆)
2928adantll 701 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ((𝑋 × {𝑆})‘𝑘) = 𝑆)
3025adantr 473 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = ( 𝑆𝑚 𝑋))
3130mpteq1d 5017 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) = (𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)))
3231cnveqd 5597 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) = (𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)))
3332imaeq1d 5771 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
3433ralrimivw 3133 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
3529, 34jca 504 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
3635ralrimiva 3132 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑘𝑋 (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
37 mpoeq123 7046 . . . . . . . . . . . 12 ((𝑋 = 𝑋 ∧ ∀𝑘𝑋 (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) → (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
3827, 36, 37sylancr 578 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
3938rneqd 5652 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
4026, 39uneq12d 4031 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢))) = ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))
4140fveq2d 6505 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))) = (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))))
4216, 41eqtrd 2814 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))))
4342fveq2d 6505 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}) = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
4410, 43eqtrd 2814 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∏t‘(𝑋 × {𝑆})) = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
451, 44syl5eq 2826 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
4645oveq1d 6993 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆)))
47 firest 16565 . . . . 5 (fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆))) = ((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))
4847fveq2i 6504 . . . 4 (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) = (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆)))
49 fvex 6514 . . . . 5 (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ∈ V
50 ovex 7010 . . . . 5 (𝑅 Cn 𝑆) ∈ V
51 tgrest 21474 . . . . 5 (((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ∈ V ∧ (𝑅 Cn 𝑆) ∈ V) → (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆)))
5249, 50, 51mp2an 679 . . . 4 (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆))
5348, 52eqtri 2802 . . 3 (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆))
5446, 53syl6eqr 2832 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) = (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))))
55 xkotop 21903 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ Top)
56 snex 5189 . . . . . 6 {( 𝑆𝑚 𝑋)} ∈ V
57 mpoexga 7585 . . . . . . . 8 ((𝑋𝑅𝑆 ∈ Top) → (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
583, 57sylan 572 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
59 rnexg 7431 . . . . . . 7 ((𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V → ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
6058, 59syl 17 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
61 unexg 7291 . . . . . 6 (({( 𝑆𝑚 𝑋)} ∈ V ∧ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V) → ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
6256, 60, 61sylancr 578 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
63 restval 16559 . . . . 5 ((({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V ∧ (𝑅 Cn 𝑆) ∈ V) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) = ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))))
6462, 50, 63sylancl 577 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) = ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))))
65 elun 4016 . . . . . . 7 (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↔ (𝑥 ∈ {( 𝑆𝑚 𝑋)} ∨ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))
662, 21cnf 21561 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑅 Cn 𝑆) → 𝑥:𝑋 𝑆)
67 elmapg 8221 . . . . . . . . . . . . . . 15 (( 𝑆𝑆𝑋𝑅) → (𝑥 ∈ ( 𝑆𝑚 𝑋) ↔ 𝑥:𝑋 𝑆))
6822, 3, 67syl2anr 587 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ ( 𝑆𝑚 𝑋) ↔ 𝑥:𝑋 𝑆))
6966, 68syl5ibr 238 . . . . . . . . . . . . 13 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ (𝑅 Cn 𝑆) → 𝑥 ∈ ( 𝑆𝑚 𝑋)))
7069ssrdv 3866 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
7170adantr 473 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
72 elsni 4459 . . . . . . . . . . . 12 (𝑥 ∈ {( 𝑆𝑚 𝑋)} → 𝑥 = ( 𝑆𝑚 𝑋))
7372adantl 474 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → 𝑥 = ( 𝑆𝑚 𝑋))
7471, 73sseqtr4d 3900 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ⊆ 𝑥)
75 sseqin2 4081 . . . . . . . . . 10 ((𝑅 Cn 𝑆) ⊆ 𝑥 ↔ (𝑥 ∩ (𝑅 Cn 𝑆)) = (𝑅 Cn 𝑆))
7674, 75sylib 210 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑥 ∩ (𝑅 Cn 𝑆)) = (𝑅 Cn 𝑆))
77 eqid 2778 . . . . . . . . . . . 12 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
7877xkouni 21914 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = (𝑆 ^ko 𝑅))
79 eqid 2778 . . . . . . . . . . . . 13 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
8079topopn 21221 . . . . . . . . . . . 12 ((𝑆 ^ko 𝑅) ∈ Top → (𝑆 ^ko 𝑅) ∈ (𝑆 ^ko 𝑅))
8155, 80syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ (𝑆 ^ko 𝑅))
8278, 81eqeltrd 2866 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆 ^ko 𝑅))
8382adantr 473 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ∈ (𝑆 ^ko 𝑅))
8476, 83eqeltrd 2866 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
85 eqid 2778 . . . . . . . . . . 11 (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
8685rnmpo 7102 . . . . . . . . . 10 ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) = {𝑥 ∣ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)}
8786abeq2i 2900 . . . . . . . . 9 (𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ↔ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
88 cnvresima 5928 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) “ 𝑢) = (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆))
8970adantr 473 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
9089resmptd 5755 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)))
9190cnveqd 5597 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)))
9291imaeq1d 5771 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) “ 𝑢) = ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢))
9388, 92syl5eqr 2828 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) = ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢))
94 fvex 6514 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝑘) ∈ V
9594rgenw 3100 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ (𝑅 Cn 𝑆)(𝑤𝑘) ∈ V
96 eqid 2778 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))
9796fnmpt 6320 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ (𝑅 Cn 𝑆)(𝑤𝑘) ∈ V → (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆))
9895, 97mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆))
99 elpreima 6655 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢)))
10098, 99syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢)))
101 fveq1 6500 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
102 fvex 6514 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑘) ∈ V
103101, 96, 102fvmpt 6597 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ (𝑅 Cn 𝑆) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) = (𝑓𝑘))
104103adantl 474 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) = (𝑓𝑘))
105104eleq1d 2850 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢 ↔ (𝑓𝑘) ∈ 𝑢))
106102snss 4593 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑘) ∈ 𝑢 ↔ {(𝑓𝑘)} ⊆ 𝑢)
10789sselda 3860 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑓 ∈ ( 𝑆𝑚 𝑋))
108 elmapi 8230 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ( 𝑆𝑚 𝑋) → 𝑓:𝑋 𝑆)
109 ffn 6346 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑋 𝑆𝑓 Fn 𝑋)
110107, 108, 1093syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑓 Fn 𝑋)
111 simplrl 764 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑘𝑋)
112 fnsnfv 6573 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 Fn 𝑋𝑘𝑋) → {(𝑓𝑘)} = (𝑓 “ {𝑘}))
113110, 111, 112syl2anc 576 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → {(𝑓𝑘)} = (𝑓 “ {𝑘}))
114113sseq1d 3890 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ({(𝑓𝑘)} ⊆ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
115106, 114syl5bb 275 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ((𝑓𝑘) ∈ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
116105, 115bitrd 271 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
117116pm5.32da 571 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)))
118100, 117bitrd 271 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)))
119118abbi2dv 2902 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) = {𝑓 ∣ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)})
120 df-rab 3097 . . . . . . . . . . . . . . 15 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢} = {𝑓 ∣ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)}
121119, 120syl6eqr 2832 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢})
12293, 121eqtrd 2814 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢})
123 simpll 754 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑅 ∈ Top)
12411adantr 473 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑆 ∈ Top)
125 simprl 758 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑘𝑋)
126125snssd 4617 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → {𝑘} ⊆ 𝑋)
1272toptopon 21232 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
128123, 127sylib 210 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑅 ∈ (TopOn‘𝑋))
129 restsn2 21486 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝑅t {𝑘}) = 𝒫 {𝑘})
130128, 125, 129syl2anc 576 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅t {𝑘}) = 𝒫 {𝑘})
131 snfi 8393 . . . . . . . . . . . . . . . 16 {𝑘} ∈ Fin
132 discmp 21713 . . . . . . . . . . . . . . . 16 ({𝑘} ∈ Fin ↔ 𝒫 {𝑘} ∈ Comp)
133131, 132mpbi 222 . . . . . . . . . . . . . . 15 𝒫 {𝑘} ∈ Comp
134130, 133syl6eqel 2874 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅t {𝑘}) ∈ Comp)
135 simprr 760 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑢𝑆)
1362, 123, 124, 126, 134, 135xkoopn 21904 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢} ∈ (𝑆 ^ko 𝑅))
137122, 136eqeltrd 2866 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
138 ineq1 4070 . . . . . . . . . . . . 13 (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) = (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)))
139138eleq1d 2850 . . . . . . . . . . . 12 (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → ((𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅) ↔ (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
140137, 139syl5ibrcom 239 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
141140rexlimdvva 3239 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
142141imp 398 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14387, 142sylan2b 584 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14484, 143jaodan 940 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑥 ∈ {( 𝑆𝑚 𝑋)} ∨ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14565, 144sylan2b 584 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
146145fmpttd 6704 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))):({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))⟶(𝑆 ^ko 𝑅))
147146frnd 6353 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))) ⊆ (𝑆 ^ko 𝑅))
14864, 147eqsstrd 3897 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))
149 tgfiss 21306 . . 3 (((𝑆 ^ko 𝑅) ∈ Top ∧ (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅)) → (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) ⊆ (𝑆 ^ko 𝑅))
15055, 148, 149syl2anc 576 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) ⊆ (𝑆 ^ko 𝑅))
15154, 150eqsstrd 3897 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wex 1742  wcel 2050  {cab 2758  wral 3088  wrex 3089  {crab 3092  Vcvv 3415  cdif 3828  cun 3829  cin 3830  wss 3831  𝒫 cpw 4423  {csn 4442   cuni 4713  cmpt 5009   × cxp 5406  ccnv 5407  ran crn 5409  cres 5410  cima 5411   Fn wfn 6185  wf 6186  cfv 6190  (class class class)co 6978  cmpo 6980  𝑚 cmap 8208  Xcixp 8261  Fincfn 8308  ficfi 8671  t crest 16553  topGenctg 16570  tcpt 16571  Topctop 21208  TopOnctopon 21225   Cn ccn 21539  Compccmp 21701   ^ko cxko 21876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-int 4751  df-iun 4795  df-iin 4796  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-1st 7503  df-2nd 7504  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-1o 7907  df-2o 7908  df-oadd 7911  df-er 8091  df-map 8210  df-ixp 8262  df-en 8309  df-dom 8310  df-sdom 8311  df-fin 8312  df-fi 8672  df-rest 16555  df-topgen 16576  df-pt 16577  df-top 21209  df-topon 21226  df-bases 21261  df-cn 21542  df-cmp 21702  df-xko 21878
This theorem is referenced by:  xkopt  21970  xkopjcn  21971
  Copyright terms: Public domain W3C validator