Step | Hyp | Ref
| Expression |
1 | | xkoptsub.j |
. . . . 5
⊢ 𝐽 =
(∏t‘(𝑋 × {𝑆})) |
2 | | xkoptsub.x |
. . . . . . . . 9
⊢ 𝑋 = ∪
𝑅 |
3 | 2 | topopn 22065 |
. . . . . . . 8
⊢ (𝑅 ∈ Top → 𝑋 ∈ 𝑅) |
4 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑋 ∈ 𝑅) |
5 | | fconstg 6653 |
. . . . . . . . 9
⊢ (𝑆 ∈ Top → (𝑋 × {𝑆}):𝑋⟶{𝑆}) |
6 | 5 | adantl 482 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}):𝑋⟶{𝑆}) |
7 | 6 | ffnd 6593 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}) Fn 𝑋) |
8 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝑔‘𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝑋 (𝑔‘𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝑔‘𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝑋 (𝑔‘𝑦))} |
9 | 8 | ptval 22731 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑅 ∧ (𝑋 × {𝑆}) Fn 𝑋) → (∏t‘(𝑋 × {𝑆})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝑔‘𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝑋 (𝑔‘𝑦))})) |
10 | 4, 7, 9 | syl2anc 584 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(∏t‘(𝑋 × {𝑆})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝑔‘𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝑋 (𝑔‘𝑦))})) |
11 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top) |
12 | 11 | snssd 4742 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑆} ⊆ Top) |
13 | 6, 12 | fssd 6610 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}):𝑋⟶Top) |
14 | | eqid 2738 |
. . . . . . . . . 10
⊢ X𝑛 ∈
𝑋 ∪ ((𝑋
× {𝑆})‘𝑛) = X𝑛 ∈
𝑋 ∪ ((𝑋
× {𝑆})‘𝑛) |
15 | 8, 14 | ptbasfi 22742 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝑔‘𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝑋 (𝑔‘𝑦))} = (fi‘({X𝑛 ∈
𝑋 ∪ ((𝑋
× {𝑆})‘𝑛)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢))))) |
16 | 4, 13, 15 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝑔‘𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝑋 (𝑔‘𝑦))} = (fi‘({X𝑛 ∈
𝑋 ∪ ((𝑋
× {𝑆})‘𝑛)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢))))) |
17 | | fvconst2g 7069 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Top ∧ 𝑛 ∈ 𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆) |
18 | 17 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑛 ∈ 𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆) |
19 | 18 | unieqd 4853 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑛 ∈ 𝑋) → ∪
((𝑋 × {𝑆})‘𝑛) = ∪ 𝑆) |
20 | 19 | ixpeq2dva 8687 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛 ∈
𝑋 ∪ ((𝑋
× {𝑆})‘𝑛) = X𝑛 ∈
𝑋 ∪ 𝑆) |
21 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑆 =
∪ 𝑆 |
22 | 21 | topopn 22065 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ Top → ∪ 𝑆
∈ 𝑆) |
23 | | ixpconstg 8681 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆) → X𝑛 ∈ 𝑋 ∪ 𝑆 = (∪
𝑆 ↑m 𝑋)) |
24 | 3, 22, 23 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛 ∈
𝑋 ∪ 𝑆 =
(∪ 𝑆 ↑m 𝑋)) |
25 | 20, 24 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛 ∈
𝑋 ∪ ((𝑋
× {𝑆})‘𝑛) = (∪ 𝑆
↑m 𝑋)) |
26 | 25 | sneqd 4573 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {X𝑛 ∈
𝑋 ∪ ((𝑋
× {𝑆})‘𝑛)} = {(∪ 𝑆
↑m 𝑋)}) |
27 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ 𝑋 = 𝑋 |
28 | | fvconst2g 7069 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ Top ∧ 𝑘 ∈ 𝑋) → ((𝑋 × {𝑆})‘𝑘) = 𝑆) |
29 | 28 | adantll 711 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘 ∈ 𝑋) → ((𝑋 × {𝑆})‘𝑘) = 𝑆) |
30 | 25 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘 ∈ 𝑋) → X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) = (∪ 𝑆 ↑m 𝑋)) |
31 | 30 | mpteq1d 5168 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘 ∈ 𝑋) → (𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) = (𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘))) |
32 | 31 | cnveqd 5777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘 ∈ 𝑋) → ◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) = ◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘))) |
33 | 32 | imaeq1d 5961 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘 ∈ 𝑋) → (◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) |
34 | 33 | ralrimivw 3109 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘 ∈ 𝑋) → ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) |
35 | 29, 34 | jca 512 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘 ∈ 𝑋) → (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) |
36 | 35 | ralrimiva 3108 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
∀𝑘 ∈ 𝑋 (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) |
37 | | mpoeq123 7337 |
. . . . . . . . . . . 12
⊢ ((𝑋 = 𝑋 ∧ ∀𝑘 ∈ 𝑋 (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)(◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) → (𝑘 ∈ 𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) = (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) |
38 | 27, 36, 37 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑘 ∈ 𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) = (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) |
39 | 38 | rneqd 5840 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ 𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) = ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) |
40 | 26, 39 | uneq12d 4097 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ({X𝑛 ∈
𝑋 ∪ ((𝑋
× {𝑆})‘𝑛)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢))) = ({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) |
41 | 40 | fveq2d 6770 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(fi‘({X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝑋 ∪ ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)))) = (fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))))) |
42 | 16, 41 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝑔‘𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝑋 (𝑔‘𝑦))} = (fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))))) |
43 | 42 | fveq2d 6770 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(topGen‘{𝑥 ∣
∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝑔‘𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝑋 (𝑔‘𝑦))}) = (topGen‘(fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
44 | 10, 43 | eqtrd 2778 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(∏t‘(𝑋 × {𝑆})) = (topGen‘(fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
45 | 1, 44 | eqtrid 2790 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 =
(topGen‘(fi‘({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))))) |
46 | 45 | oveq1d 7282 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽 ↾t (𝑅 Cn 𝑆)) = ((topGen‘(fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆))) |
47 | | firest 17153 |
. . . . 5
⊢
(fi‘(({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆))) = ((fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆)) |
48 | 47 | fveq2i 6769 |
. . . 4
⊢
(topGen‘(fi‘(({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) = (topGen‘((fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) |
49 | | fvex 6779 |
. . . . 5
⊢
(fi‘({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) ∈ V |
50 | | ovex 7300 |
. . . . 5
⊢ (𝑅 Cn 𝑆) ∈ V |
51 | | tgrest 22320 |
. . . . 5
⊢
(((fi‘({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) ∈ V ∧ (𝑅 Cn 𝑆) ∈ V) →
(topGen‘((fi‘({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) = ((topGen‘(fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆))) |
52 | 49, 50, 51 | mp2an 689 |
. . . 4
⊢
(topGen‘((fi‘({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) = ((topGen‘(fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆)) |
53 | 48, 52 | eqtri 2766 |
. . 3
⊢
(topGen‘(fi‘(({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) = ((topGen‘(fi‘({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆)) |
54 | 46, 53 | eqtr4di 2796 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽 ↾t (𝑅 Cn 𝑆)) = (topGen‘(fi‘(({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆))))) |
55 | | xkotop 22749 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) |
56 | | snex 5352 |
. . . . . 6
⊢ {(∪ 𝑆
↑m 𝑋)}
∈ V |
57 | | mpoexga 7907 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑅 ∧ 𝑆 ∈ Top) → (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) |
58 | 3, 57 | sylan 580 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) |
59 | | rnexg 7741 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V → ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) |
60 | 58, 59 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) |
61 | | unexg 7589 |
. . . . . 6
⊢ (({(∪ 𝑆
↑m 𝑋)}
∈ V ∧ ran (𝑘
∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) ∈ V) → ({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V) |
62 | 56, 60, 61 | sylancr 587 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V) |
63 | | restval 17147 |
. . . . 5
⊢
((({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ∈ V ∧ (𝑅 Cn 𝑆) ∈ V) → (({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) = ran (𝑥 ∈ ({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆)))) |
64 | 62, 50, 63 | sylancl 586 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) = ran (𝑥 ∈ ({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆)))) |
65 | | elun 4082 |
. . . . . . 7
⊢ (𝑥 ∈ ({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↔ (𝑥 ∈ {(∪ 𝑆 ↑m 𝑋)} ∨ 𝑥 ∈ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) |
66 | 2, 21 | cnf 22407 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑅 Cn 𝑆) → 𝑥:𝑋⟶∪ 𝑆) |
67 | | elmapg 8615 |
. . . . . . . . . . . . . . 15
⊢ ((∪ 𝑆
∈ 𝑆 ∧ 𝑋 ∈ 𝑅) → (𝑥 ∈ (∪ 𝑆 ↑m 𝑋) ↔ 𝑥:𝑋⟶∪ 𝑆)) |
68 | 22, 3, 67 | syl2anr 597 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ (∪ 𝑆
↑m 𝑋)
↔ 𝑥:𝑋⟶∪ 𝑆)) |
69 | 66, 68 | syl5ibr 245 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ (𝑅 Cn 𝑆) → 𝑥 ∈ (∪ 𝑆 ↑m 𝑋))) |
70 | 69 | ssrdv 3926 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ (∪
𝑆 ↑m 𝑋)) |
71 | 70 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {(∪ 𝑆
↑m 𝑋)})
→ (𝑅 Cn 𝑆) ⊆ (∪ 𝑆
↑m 𝑋)) |
72 | | elsni 4578 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ {(∪ 𝑆
↑m 𝑋)}
→ 𝑥 = (∪ 𝑆
↑m 𝑋)) |
73 | 72 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {(∪ 𝑆
↑m 𝑋)})
→ 𝑥 = (∪ 𝑆
↑m 𝑋)) |
74 | 71, 73 | sseqtrrd 3961 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {(∪ 𝑆
↑m 𝑋)})
→ (𝑅 Cn 𝑆) ⊆ 𝑥) |
75 | | sseqin2 4149 |
. . . . . . . . . 10
⊢ ((𝑅 Cn 𝑆) ⊆ 𝑥 ↔ (𝑥 ∩ (𝑅 Cn 𝑆)) = (𝑅 Cn 𝑆)) |
76 | 74, 75 | sylib 217 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {(∪ 𝑆
↑m 𝑋)})
→ (𝑥 ∩ (𝑅 Cn 𝑆)) = (𝑅 Cn 𝑆)) |
77 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑆 ↑ko 𝑅) = (𝑆 ↑ko 𝑅) |
78 | 77 | xkouni 22760 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ (𝑆 ↑ko 𝑅)) |
79 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ (𝑆
↑ko 𝑅) =
∪ (𝑆 ↑ko 𝑅) |
80 | 79 | topopn 22065 |
. . . . . . . . . . . 12
⊢ ((𝑆 ↑ko 𝑅) ∈ Top → ∪ (𝑆
↑ko 𝑅)
∈ (𝑆
↑ko 𝑅)) |
81 | 55, 80 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ (𝑆
↑ko 𝑅)
∈ (𝑆
↑ko 𝑅)) |
82 | 78, 81 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆 ↑ko 𝑅)) |
83 | 82 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {(∪ 𝑆
↑m 𝑋)})
→ (𝑅 Cn 𝑆) ∈ (𝑆 ↑ko 𝑅)) |
84 | 76, 83 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {(∪ 𝑆
↑m 𝑋)})
→ (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅)) |
85 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) = (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) |
86 | 85 | rnmpo 7397 |
. . . . . . . . . 10
⊢ ran
(𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) = {𝑥 ∣ ∃𝑘 ∈ 𝑋 ∃𝑢 ∈ 𝑆 𝑥 = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)} |
87 | 86 | abeq2i 2875 |
. . . . . . . . 9
⊢ (𝑥 ∈ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) ↔ ∃𝑘 ∈ 𝑋 ∃𝑢 ∈ 𝑆 𝑥 = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) |
88 | | cnvresima 6126 |
. . . . . . . . . . . . . . 15
⊢ (◡((𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) ↾ (𝑅 Cn 𝑆)) “ 𝑢) = ((◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) |
89 | 70 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (𝑅 Cn 𝑆) ⊆ (∪
𝑆 ↑m 𝑋)) |
90 | 89 | resmptd 5941 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → ((𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) ↾ (𝑅 Cn 𝑆)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))) |
91 | 90 | cnveqd 5777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → ◡((𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) ↾ (𝑅 Cn 𝑆)) = ◡(𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))) |
92 | 91 | imaeq1d 5961 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (◡((𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) ↾ (𝑅 Cn 𝑆)) “ 𝑢) = (◡(𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) “ 𝑢)) |
93 | 88, 92 | eqtr3id 2792 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → ((◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) = (◡(𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) “ 𝑢)) |
94 | | fvex 6779 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤‘𝑘) ∈ V |
95 | 94 | rgenw 3076 |
. . . . . . . . . . . . . . . . . . 19
⊢
∀𝑤 ∈
(𝑅 Cn 𝑆)(𝑤‘𝑘) ∈ V |
96 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) |
97 | 96 | fnmpt 6565 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
(𝑅 Cn 𝑆)(𝑤‘𝑘) ∈ V → (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) Fn (𝑅 Cn 𝑆)) |
98 | 95, 97 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) Fn (𝑅 Cn 𝑆)) |
99 | | elpreima 6927 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) Fn (𝑅 Cn 𝑆) → (𝑓 ∈ (◡(𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))‘𝑓) ∈ 𝑢))) |
100 | 98, 99 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (𝑓 ∈ (◡(𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))‘𝑓) ∈ 𝑢))) |
101 | | fveq1 6765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑓 → (𝑤‘𝑘) = (𝑓‘𝑘)) |
102 | | fvex 6779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓‘𝑘) ∈ V |
103 | 101, 96, 102 | fvmpt 6867 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 ∈ (𝑅 Cn 𝑆) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))‘𝑓) = (𝑓‘𝑘)) |
104 | 103 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))‘𝑓) = (𝑓‘𝑘)) |
105 | 104 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))‘𝑓) ∈ 𝑢 ↔ (𝑓‘𝑘) ∈ 𝑢)) |
106 | 102 | snss 4719 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑘) ∈ 𝑢 ↔ {(𝑓‘𝑘)} ⊆ 𝑢) |
107 | 89 | sselda 3920 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑓 ∈ (∪ 𝑆 ↑m 𝑋)) |
108 | | elmapi 8624 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 ∈ (∪ 𝑆
↑m 𝑋)
→ 𝑓:𝑋⟶∪ 𝑆) |
109 | | ffn 6592 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓:𝑋⟶∪ 𝑆 → 𝑓 Fn 𝑋) |
110 | 107, 108,
109 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑓 Fn 𝑋) |
111 | | simplrl 774 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑘 ∈ 𝑋) |
112 | | fnsnfv 6839 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓 Fn 𝑋 ∧ 𝑘 ∈ 𝑋) → {(𝑓‘𝑘)} = (𝑓 “ {𝑘})) |
113 | 110, 111,
112 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → {(𝑓‘𝑘)} = (𝑓 “ {𝑘})) |
114 | 113 | sseq1d 3951 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ({(𝑓‘𝑘)} ⊆ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢)) |
115 | 106, 114 | syl5bb 283 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ((𝑓‘𝑘) ∈ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢)) |
116 | 105, 115 | bitrd 278 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))‘𝑓) ∈ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢)) |
117 | 116 | pm5.32da 579 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → ((𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘))‘𝑓) ∈ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢))) |
118 | 100, 117 | bitrd 278 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (𝑓 ∈ (◡(𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢))) |
119 | 118 | abbi2dv 2877 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (◡(𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) “ 𝑢) = {𝑓 ∣ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)}) |
120 | | df-rab 3073 |
. . . . . . . . . . . . . . 15
⊢ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢} = {𝑓 ∣ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)} |
121 | 119, 120 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (◡(𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤‘𝑘)) “ 𝑢) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢}) |
122 | 93, 121 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → ((◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢}) |
123 | | simpll 764 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → 𝑅 ∈ Top) |
124 | 11 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → 𝑆 ∈ Top) |
125 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → 𝑘 ∈ 𝑋) |
126 | 125 | snssd 4742 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → {𝑘} ⊆ 𝑋) |
127 | 2 | toptopon 22076 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
128 | 123, 127 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → 𝑅 ∈ (TopOn‘𝑋)) |
129 | | restsn2 22332 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝑋) → (𝑅 ↾t {𝑘}) = 𝒫 {𝑘}) |
130 | 128, 125,
129 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (𝑅 ↾t {𝑘}) = 𝒫 {𝑘}) |
131 | | snfi 8821 |
. . . . . . . . . . . . . . . 16
⊢ {𝑘} ∈ Fin |
132 | | discmp 22559 |
. . . . . . . . . . . . . . . 16
⊢ ({𝑘} ∈ Fin ↔ 𝒫
{𝑘} ∈
Comp) |
133 | 131, 132 | mpbi 229 |
. . . . . . . . . . . . . . 15
⊢ 𝒫
{𝑘} ∈
Comp |
134 | 130, 133 | eqeltrdi 2847 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (𝑅 ↾t {𝑘}) ∈ Comp) |
135 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → 𝑢 ∈ 𝑆) |
136 | 2, 123, 124, 126, 134, 135 | xkoopn 22750 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢} ∈ (𝑆 ↑ko 𝑅)) |
137 | 122, 136 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → ((◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅)) |
138 | | ineq1 4139 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) = ((◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆))) |
139 | 138 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) → ((𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅) ↔ ((◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅))) |
140 | 137, 139 | syl5ibrcom 246 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆)) → (𝑥 = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅))) |
141 | 140 | rexlimdvva 3221 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(∃𝑘 ∈ 𝑋 ∃𝑢 ∈ 𝑆 𝑥 = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅))) |
142 | 141 | imp 407 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ ∃𝑘 ∈ 𝑋 ∃𝑢 ∈ 𝑆 𝑥 = (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅)) |
143 | 87, 142 | sylan2b 594 |
. . . . . . . 8
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅)) |
144 | 84, 143 | jaodan 955 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑥 ∈ {(∪ 𝑆
↑m 𝑋)} ∨
𝑥 ∈ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅)) |
145 | 65, 144 | sylan2b 594 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ ({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ↑ko 𝑅)) |
146 | 145 | fmpttd 6981 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ ({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))):({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢)))⟶(𝑆 ↑ko 𝑅)) |
147 | 146 | frnd 6600 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑥 ∈ ({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))) ⊆ (𝑆 ↑ko 𝑅)) |
148 | 64, 147 | eqsstrd 3958 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ↑ko 𝑅)) |
149 | | tgfiss 22151 |
. . 3
⊢ (((𝑆 ↑ko 𝑅) ∈ Top ∧ (({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ↑ko 𝑅)) → (topGen‘(fi‘(({(∪ 𝑆
↑m 𝑋)}
∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) ⊆ (𝑆 ↑ko 𝑅)) |
150 | 55, 148, 149 | syl2anc 584 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
(topGen‘(fi‘(({(∪ 𝑆 ↑m 𝑋)} ∪ ran (𝑘 ∈ 𝑋, 𝑢 ∈ 𝑆 ↦ (◡(𝑤 ∈ (∪ 𝑆 ↑m 𝑋) ↦ (𝑤‘𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) ⊆ (𝑆 ↑ko 𝑅)) |
151 | 54, 150 | eqsstrd 3958 |
1
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽 ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ↑ko 𝑅)) |