Proof of Theorem frlmip
| Step | Hyp | Ref
| Expression |
| 1 | | frlmphl.y |
. . . 4
⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
| 2 | | eqid 2737 |
. . . . . . 7
⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) |
| 3 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘(𝑅
freeLMod 𝐼)) =
(Base‘(𝑅 freeLMod
𝐼)) |
| 4 | 2, 3 | frlmpws 21770 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s
(Base‘(𝑅 freeLMod
𝐼)))) |
| 5 | 4 | ancoms 458 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s
(Base‘(𝑅 freeLMod
𝐼)))) |
| 6 | | frlmphl.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 7 | 6 | ressid 17290 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾s 𝐵) = 𝑅) |
| 8 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑉 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵)) |
| 9 | 6 | eqimssi 4044 |
. . . . . . . . . . . 12
⊢ 𝐵 ⊆ (Base‘𝑅) |
| 10 | 9 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ 𝑉 → 𝐵 ⊆ (Base‘𝑅)) |
| 11 | 8, 10 | srasca 21183 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → (𝑅 ↾s 𝐵) = (Scalar‘((subringAlg ‘𝑅)‘𝐵))) |
| 12 | 7, 11 | eqtr3d 2779 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘((subringAlg ‘𝑅)‘𝐵))) |
| 13 | 12 | oveq1d 7446 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg
‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) |
| 14 | 13 | adantl 481 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg
‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) |
| 15 | | fvex 6919 |
. . . . . . . . 9
⊢
((subringAlg ‘𝑅)‘𝐵) ∈ V |
| 16 | | rlmval 21198 |
. . . . . . . . . . . 12
⊢
(ringLMod‘𝑅) =
((subringAlg ‘𝑅)‘(Base‘𝑅)) |
| 17 | 6 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢
((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘(Base‘𝑅)) |
| 18 | 16, 17 | eqtr4i 2768 |
. . . . . . . . . . 11
⊢
(ringLMod‘𝑅) =
((subringAlg ‘𝑅)‘𝐵) |
| 19 | 18 | oveq1i 7441 |
. . . . . . . . . 10
⊢
((ringLMod‘𝑅)
↑s 𝐼) = (((subringAlg ‘𝑅)‘𝐵) ↑s 𝐼) |
| 20 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Scalar‘((subringAlg ‘𝑅)‘𝐵)) = (Scalar‘((subringAlg ‘𝑅)‘𝐵)) |
| 21 | 19, 20 | pwsval 17531 |
. . . . . . . . 9
⊢
((((subringAlg ‘𝑅)‘𝐵) ∈ V ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg
‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) |
| 22 | 15, 21 | mpan 690 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg
‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg
‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) |
| 24 | 14, 23 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((ringLMod‘𝑅) ↑s 𝐼)) |
| 25 | 1 | fveq2i 6909 |
. . . . . . 7
⊢
(Base‘𝑌) =
(Base‘(𝑅 freeLMod
𝐼)) |
| 26 | 25 | a1i 11 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼))) |
| 27 | 24, 26 | oveq12d 7449 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s
𝐼) ↾s
(Base‘(𝑅 freeLMod
𝐼)))) |
| 28 | 5, 27 | eqtr4d 2780 |
. . . 4
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑅 freeLMod 𝐼) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))) |
| 29 | 1, 28 | eqtrid 2789 |
. . 3
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → 𝑌 = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))) |
| 30 | 29 | fveq2d 6910 |
. 2
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) →
(·𝑖‘𝑌) =
(·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))) |
| 31 | | fvex 6919 |
. . . 4
⊢
(Base‘𝑌)
∈ V |
| 32 | | eqid 2737 |
. . . . 5
⊢ ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) |
| 33 | | eqid 2737 |
. . . . 5
⊢
(·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) =
(·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) |
| 34 | 32, 33 | ressip 17389 |
. . . 4
⊢
((Base‘𝑌)
∈ V → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) =
(·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))) |
| 35 | 31, 34 | ax-mp 5 |
. . 3
⊢
(·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) =
(·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))) |
| 36 | | eqid 2737 |
. . . . 5
⊢ (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) |
| 37 | | simpr 484 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ 𝑉) |
| 38 | | snex 5436 |
. . . . . . 7
⊢
{((subringAlg ‘𝑅)‘𝐵)} ∈ V |
| 39 | | xpexg 7770 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑊 ∧ {((subringAlg ‘𝑅)‘𝐵)} ∈ V) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V) |
| 40 | 38, 39 | mpan2 691 |
. . . . . 6
⊢ (𝐼 ∈ 𝑊 → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V) |
| 41 | 40 | adantr 480 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V) |
| 42 | | eqid 2737 |
. . . . 5
⊢
(Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) |
| 43 | 15 | snnz 4776 |
. . . . . 6
⊢
{((subringAlg ‘𝑅)‘𝐵)} ≠ ∅ |
| 44 | | dmxp 5939 |
. . . . . 6
⊢
({((subringAlg ‘𝑅)‘𝐵)} ≠ ∅ → dom (𝐼 × {((subringAlg
‘𝑅)‘𝐵)}) = 𝐼) |
| 45 | 43, 44 | mp1i 13 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼) |
| 46 | 36, 37, 41, 42, 45, 33 | prdsip 17506 |
. . . 4
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) →
(·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔‘𝑥)))))) |
| 47 | 36, 37, 41, 42, 45 | prdsbas 17502 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = X𝑥 ∈ 𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))) |
| 48 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵)) |
| 49 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 → 𝐵 ⊆ (Base‘𝑅)) |
| 50 | 48, 49 | srabase 21177 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 → (Base‘𝑅) = (Base‘((subringAlg ‘𝑅)‘𝐵))) |
| 51 | 6 | a1i 11 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 → 𝐵 = (Base‘𝑅)) |
| 52 | 15 | fvconst2 7224 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 → ((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥) = ((subringAlg ‘𝑅)‘𝐵)) |
| 53 | 52 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = (Base‘((subringAlg ‘𝑅)‘𝐵))) |
| 54 | 50, 51, 53 | 3eqtr4rd 2788 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵) |
| 55 | 54 | adantl 481 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵) |
| 56 | 55 | ixpeq2dva 8952 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = X𝑥 ∈ 𝐼 𝐵) |
| 57 | 6 | fvexi 6920 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
| 58 | | ixpconstg 8946 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑊 ∧ 𝐵 ∈ V) → X𝑥 ∈
𝐼 𝐵 = (𝐵 ↑m 𝐼)) |
| 59 | 57, 58 | mpan2 691 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑊 → X𝑥 ∈ 𝐼 𝐵 = (𝐵 ↑m 𝐼)) |
| 60 | 59 | adantr 480 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → X𝑥 ∈ 𝐼 𝐵 = (𝐵 ↑m 𝐼)) |
| 61 | 47, 56, 60 | 3eqtrd 2781 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝐵 ↑m 𝐼)) |
| 62 | | frlmphl.t |
. . . . . . . . . 10
⊢ · =
(.r‘𝑅) |
| 63 | 52, 49 | sraip 21187 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐼 → (.r‘𝑅) =
(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))) |
| 64 | 62, 63 | eqtr2id 2790 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐼 →
(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = · ) |
| 65 | 64 | oveqd 7448 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐼 → ((𝑓‘𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔‘𝑥)) = ((𝑓‘𝑥) · (𝑔‘𝑥))) |
| 66 | 65 | mpteq2ia 5245 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))) |
| 67 | 66 | oveq2i 7442 |
. . . . . 6
⊢ (𝑅 Σg
(𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥)))) |
| 68 | 67 | a1i 11 |
. . . . 5
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔‘𝑥)))) = (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) |
| 69 | 61, 61, 68 | mpoeq123dv 7508 |
. . . 4
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥)))))) |
| 70 | 46, 69 | eqtrd 2777 |
. . 3
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) →
(·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥)))))) |
| 71 | 35, 70 | eqtr3id 2791 |
. 2
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) →
(·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))) = (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥)))))) |
| 72 | 30, 71 | eqtr2d 2778 |
1
⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) =
(·𝑖‘𝑌)) |