MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmip Structured version   Visualization version   GIF version

Theorem frlmip 21687
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
Assertion
Ref Expression
frlmip ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥   𝑓,𝑊,𝑔,𝑥
Allowed substitution hints:   · (𝑥,𝑓,𝑔)   𝑌(𝑥,𝑓,𝑔)

Proof of Theorem frlmip
StepHypRef Expression
1 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2729 . . . . . . 7 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
3 eqid 2729 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
42, 3frlmpws 21659 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
54ancoms 458 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
6 frlmphl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
76ressid 17214 . . . . . . . . . 10 (𝑅𝑉 → (𝑅s 𝐵) = 𝑅)
8 eqidd 2730 . . . . . . . . . . 11 (𝑅𝑉 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵))
96eqimssi 4007 . . . . . . . . . . . 12 𝐵 ⊆ (Base‘𝑅)
109a1i 11 . . . . . . . . . . 11 (𝑅𝑉𝐵 ⊆ (Base‘𝑅))
118, 10srasca 21087 . . . . . . . . . 10 (𝑅𝑉 → (𝑅s 𝐵) = (Scalar‘((subringAlg ‘𝑅)‘𝐵)))
127, 11eqtr3d 2766 . . . . . . . . 9 (𝑅𝑉𝑅 = (Scalar‘((subringAlg ‘𝑅)‘𝐵)))
1312oveq1d 7402 . . . . . . . 8 (𝑅𝑉 → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
1413adantl 481 . . . . . . 7 ((𝐼𝑊𝑅𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
15 fvex 6871 . . . . . . . . 9 ((subringAlg ‘𝑅)‘𝐵) ∈ V
16 rlmval 21098 . . . . . . . . . . . 12 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
176fveq2i 6861 . . . . . . . . . . . 12 ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
1816, 17eqtr4i 2755 . . . . . . . . . . 11 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘𝐵)
1918oveq1i 7397 . . . . . . . . . 10 ((ringLMod‘𝑅) ↑s 𝐼) = (((subringAlg ‘𝑅)‘𝐵) ↑s 𝐼)
20 eqid 2729 . . . . . . . . . 10 (Scalar‘((subringAlg ‘𝑅)‘𝐵)) = (Scalar‘((subringAlg ‘𝑅)‘𝐵))
2119, 20pwsval 17449 . . . . . . . . 9 ((((subringAlg ‘𝑅)‘𝐵) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2215, 21mpan 690 . . . . . . . 8 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2322adantr 480 . . . . . . 7 ((𝐼𝑊𝑅𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2414, 23eqtr4d 2767 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((ringLMod‘𝑅) ↑s 𝐼))
251fveq2i 6861 . . . . . . 7 (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼))
2625a1i 11 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼)))
2724, 26oveq12d 7405 . . . . 5 ((𝐼𝑊𝑅𝑉) → ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
285, 27eqtr4d 2767 . . . 4 ((𝐼𝑊𝑅𝑉) → (𝑅 freeLMod 𝐼) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
291, 28eqtrid 2776 . . 3 ((𝐼𝑊𝑅𝑉) → 𝑌 = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
3029fveq2d 6862 . 2 ((𝐼𝑊𝑅𝑉) → (·𝑖𝑌) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))))
31 fvex 6871 . . . 4 (Base‘𝑌) ∈ V
32 eqid 2729 . . . . 5 ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))
33 eqid 2729 . . . . 5 (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
3432, 33ressip 17308 . . . 4 ((Base‘𝑌) ∈ V → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))))
3531, 34ax-mp 5 . . 3 (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
36 eqid 2729 . . . . 5 (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))
37 simpr 484 . . . . 5 ((𝐼𝑊𝑅𝑉) → 𝑅𝑉)
38 snex 5391 . . . . . . 7 {((subringAlg ‘𝑅)‘𝐵)} ∈ V
39 xpexg 7726 . . . . . . 7 ((𝐼𝑊 ∧ {((subringAlg ‘𝑅)‘𝐵)} ∈ V) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
4038, 39mpan2 691 . . . . . 6 (𝐼𝑊 → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
4140adantr 480 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
42 eqid 2729 . . . . 5 (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
4315snnz 4740 . . . . . 6 {((subringAlg ‘𝑅)‘𝐵)} ≠ ∅
44 dmxp 5892 . . . . . 6 ({((subringAlg ‘𝑅)‘𝐵)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼)
4543, 44mp1i 13 . . . . 5 ((𝐼𝑊𝑅𝑉) → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼)
4636, 37, 41, 42, 45, 33prdsip 17424 . . . 4 ((𝐼𝑊𝑅𝑉) → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))))))
4736, 37, 41, 42, 45prdsbas 17420 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)))
48 eqidd 2730 . . . . . . . . . 10 (𝑥𝐼 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵))
499a1i 11 . . . . . . . . . 10 (𝑥𝐼𝐵 ⊆ (Base‘𝑅))
5048, 49srabase 21084 . . . . . . . . 9 (𝑥𝐼 → (Base‘𝑅) = (Base‘((subringAlg ‘𝑅)‘𝐵)))
516a1i 11 . . . . . . . . 9 (𝑥𝐼𝐵 = (Base‘𝑅))
5215fvconst2 7178 . . . . . . . . . 10 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥) = ((subringAlg ‘𝑅)‘𝐵))
5352fveq2d 6862 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = (Base‘((subringAlg ‘𝑅)‘𝐵)))
5450, 51, 533eqtr4rd 2775 . . . . . . . 8 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵)
5554adantl 481 . . . . . . 7 (((𝐼𝑊𝑅𝑉) ∧ 𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵)
5655ixpeq2dva 8885 . . . . . 6 ((𝐼𝑊𝑅𝑉) → X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = X𝑥𝐼 𝐵)
576fvexi 6872 . . . . . . . 8 𝐵 ∈ V
58 ixpconstg 8879 . . . . . . . 8 ((𝐼𝑊𝐵 ∈ V) → X𝑥𝐼 𝐵 = (𝐵m 𝐼))
5957, 58mpan2 691 . . . . . . 7 (𝐼𝑊X𝑥𝐼 𝐵 = (𝐵m 𝐼))
6059adantr 480 . . . . . 6 ((𝐼𝑊𝑅𝑉) → X𝑥𝐼 𝐵 = (𝐵m 𝐼))
6147, 56, 603eqtrd 2768 . . . . 5 ((𝐼𝑊𝑅𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝐵m 𝐼))
62 frlmphl.t . . . . . . . . . 10 · = (.r𝑅)
6352, 49sraip 21089 . . . . . . . . . 10 (𝑥𝐼 → (.r𝑅) = (·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)))
6462, 63eqtr2id 2777 . . . . . . . . 9 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = · )
6564oveqd 7404 . . . . . . . 8 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
6665mpteq2ia 5202 . . . . . . 7 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
6766oveq2i 7398 . . . . . 6 (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
6867a1i 11 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
6961, 61, 68mpoeq123dv 7464 . . . 4 ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7046, 69eqtrd 2764 . . 3 ((𝐼𝑊𝑅𝑉) → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7135, 70eqtr3id 2778 . 2 ((𝐼𝑊𝑅𝑉) → (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7230, 71eqtr2d 2765 1 ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  wss 3914  c0 4296  {csn 4589  cmpt 5188   × cxp 5636  dom cdm 5638  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Xcixp 8870  Basecbs 17179  s cress 17200  .rcmulr 17221  Scalarcsca 17223  ·𝑖cip 17225   Σg cgsu 17403  Xscprds 17408  s cpws 17409  subringAlg csra 21078  ringLModcrglmod 21079   freeLMod cfrlm 21655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-prds 17410  df-pws 17412  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656
This theorem is referenced by:  frlmipval  21688  frlmphl  21690
  Copyright terms: Public domain W3C validator