MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmip Structured version   Visualization version   GIF version

Theorem frlmip 21798
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
Assertion
Ref Expression
frlmip ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥   𝑓,𝑊,𝑔,𝑥
Allowed substitution hints:   · (𝑥,𝑓,𝑔)   𝑌(𝑥,𝑓,𝑔)

Proof of Theorem frlmip
StepHypRef Expression
1 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2737 . . . . . . 7 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
3 eqid 2737 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
42, 3frlmpws 21770 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
54ancoms 458 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
6 frlmphl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
76ressid 17290 . . . . . . . . . 10 (𝑅𝑉 → (𝑅s 𝐵) = 𝑅)
8 eqidd 2738 . . . . . . . . . . 11 (𝑅𝑉 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵))
96eqimssi 4044 . . . . . . . . . . . 12 𝐵 ⊆ (Base‘𝑅)
109a1i 11 . . . . . . . . . . 11 (𝑅𝑉𝐵 ⊆ (Base‘𝑅))
118, 10srasca 21183 . . . . . . . . . 10 (𝑅𝑉 → (𝑅s 𝐵) = (Scalar‘((subringAlg ‘𝑅)‘𝐵)))
127, 11eqtr3d 2779 . . . . . . . . 9 (𝑅𝑉𝑅 = (Scalar‘((subringAlg ‘𝑅)‘𝐵)))
1312oveq1d 7446 . . . . . . . 8 (𝑅𝑉 → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
1413adantl 481 . . . . . . 7 ((𝐼𝑊𝑅𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
15 fvex 6919 . . . . . . . . 9 ((subringAlg ‘𝑅)‘𝐵) ∈ V
16 rlmval 21198 . . . . . . . . . . . 12 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
176fveq2i 6909 . . . . . . . . . . . 12 ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
1816, 17eqtr4i 2768 . . . . . . . . . . 11 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘𝐵)
1918oveq1i 7441 . . . . . . . . . 10 ((ringLMod‘𝑅) ↑s 𝐼) = (((subringAlg ‘𝑅)‘𝐵) ↑s 𝐼)
20 eqid 2737 . . . . . . . . . 10 (Scalar‘((subringAlg ‘𝑅)‘𝐵)) = (Scalar‘((subringAlg ‘𝑅)‘𝐵))
2119, 20pwsval 17531 . . . . . . . . 9 ((((subringAlg ‘𝑅)‘𝐵) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2215, 21mpan 690 . . . . . . . 8 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2322adantr 480 . . . . . . 7 ((𝐼𝑊𝑅𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2414, 23eqtr4d 2780 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((ringLMod‘𝑅) ↑s 𝐼))
251fveq2i 6909 . . . . . . 7 (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼))
2625a1i 11 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼)))
2724, 26oveq12d 7449 . . . . 5 ((𝐼𝑊𝑅𝑉) → ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
285, 27eqtr4d 2780 . . . 4 ((𝐼𝑊𝑅𝑉) → (𝑅 freeLMod 𝐼) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
291, 28eqtrid 2789 . . 3 ((𝐼𝑊𝑅𝑉) → 𝑌 = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
3029fveq2d 6910 . 2 ((𝐼𝑊𝑅𝑉) → (·𝑖𝑌) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))))
31 fvex 6919 . . . 4 (Base‘𝑌) ∈ V
32 eqid 2737 . . . . 5 ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))
33 eqid 2737 . . . . 5 (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
3432, 33ressip 17389 . . . 4 ((Base‘𝑌) ∈ V → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))))
3531, 34ax-mp 5 . . 3 (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
36 eqid 2737 . . . . 5 (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))
37 simpr 484 . . . . 5 ((𝐼𝑊𝑅𝑉) → 𝑅𝑉)
38 snex 5436 . . . . . . 7 {((subringAlg ‘𝑅)‘𝐵)} ∈ V
39 xpexg 7770 . . . . . . 7 ((𝐼𝑊 ∧ {((subringAlg ‘𝑅)‘𝐵)} ∈ V) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
4038, 39mpan2 691 . . . . . 6 (𝐼𝑊 → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
4140adantr 480 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
42 eqid 2737 . . . . 5 (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
4315snnz 4776 . . . . . 6 {((subringAlg ‘𝑅)‘𝐵)} ≠ ∅
44 dmxp 5939 . . . . . 6 ({((subringAlg ‘𝑅)‘𝐵)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼)
4543, 44mp1i 13 . . . . 5 ((𝐼𝑊𝑅𝑉) → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼)
4636, 37, 41, 42, 45, 33prdsip 17506 . . . 4 ((𝐼𝑊𝑅𝑉) → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))))))
4736, 37, 41, 42, 45prdsbas 17502 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)))
48 eqidd 2738 . . . . . . . . . 10 (𝑥𝐼 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵))
499a1i 11 . . . . . . . . . 10 (𝑥𝐼𝐵 ⊆ (Base‘𝑅))
5048, 49srabase 21177 . . . . . . . . 9 (𝑥𝐼 → (Base‘𝑅) = (Base‘((subringAlg ‘𝑅)‘𝐵)))
516a1i 11 . . . . . . . . 9 (𝑥𝐼𝐵 = (Base‘𝑅))
5215fvconst2 7224 . . . . . . . . . 10 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥) = ((subringAlg ‘𝑅)‘𝐵))
5352fveq2d 6910 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = (Base‘((subringAlg ‘𝑅)‘𝐵)))
5450, 51, 533eqtr4rd 2788 . . . . . . . 8 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵)
5554adantl 481 . . . . . . 7 (((𝐼𝑊𝑅𝑉) ∧ 𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵)
5655ixpeq2dva 8952 . . . . . 6 ((𝐼𝑊𝑅𝑉) → X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = X𝑥𝐼 𝐵)
576fvexi 6920 . . . . . . . 8 𝐵 ∈ V
58 ixpconstg 8946 . . . . . . . 8 ((𝐼𝑊𝐵 ∈ V) → X𝑥𝐼 𝐵 = (𝐵m 𝐼))
5957, 58mpan2 691 . . . . . . 7 (𝐼𝑊X𝑥𝐼 𝐵 = (𝐵m 𝐼))
6059adantr 480 . . . . . 6 ((𝐼𝑊𝑅𝑉) → X𝑥𝐼 𝐵 = (𝐵m 𝐼))
6147, 56, 603eqtrd 2781 . . . . 5 ((𝐼𝑊𝑅𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝐵m 𝐼))
62 frlmphl.t . . . . . . . . . 10 · = (.r𝑅)
6352, 49sraip 21187 . . . . . . . . . 10 (𝑥𝐼 → (.r𝑅) = (·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)))
6462, 63eqtr2id 2790 . . . . . . . . 9 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = · )
6564oveqd 7448 . . . . . . . 8 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
6665mpteq2ia 5245 . . . . . . 7 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
6766oveq2i 7442 . . . . . 6 (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
6867a1i 11 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
6961, 61, 68mpoeq123dv 7508 . . . 4 ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7046, 69eqtrd 2777 . . 3 ((𝐼𝑊𝑅𝑉) → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7135, 70eqtr3id 2791 . 2 ((𝐼𝑊𝑅𝑉) → (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7230, 71eqtr2d 2778 1 ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  wss 3951  c0 4333  {csn 4626  cmpt 5225   × cxp 5683  dom cdm 5685  cfv 6561  (class class class)co 7431  cmpo 7433  m cmap 8866  Xcixp 8937  Basecbs 17247  s cress 17274  .rcmulr 17298  Scalarcsca 17300  ·𝑖cip 17302   Σg cgsu 17485  Xscprds 17490  s cpws 17491  subringAlg csra 21170  ringLModcrglmod 21171   freeLMod cfrlm 21766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-prds 17492  df-pws 17494  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767
This theorem is referenced by:  frlmipval  21799  frlmphl  21801
  Copyright terms: Public domain W3C validator