MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmip Structured version   Visualization version   GIF version

Theorem frlmip 21715
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
Assertion
Ref Expression
frlmip ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥   𝑓,𝑊,𝑔,𝑥
Allowed substitution hints:   · (𝑥,𝑓,𝑔)   𝑌(𝑥,𝑓,𝑔)

Proof of Theorem frlmip
StepHypRef Expression
1 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2731 . . . . . . 7 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
3 eqid 2731 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
42, 3frlmpws 21687 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
54ancoms 458 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
6 frlmphl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
76ressid 17155 . . . . . . . . . 10 (𝑅𝑉 → (𝑅s 𝐵) = 𝑅)
8 eqidd 2732 . . . . . . . . . . 11 (𝑅𝑉 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵))
96eqimssi 3990 . . . . . . . . . . . 12 𝐵 ⊆ (Base‘𝑅)
109a1i 11 . . . . . . . . . . 11 (𝑅𝑉𝐵 ⊆ (Base‘𝑅))
118, 10srasca 21114 . . . . . . . . . 10 (𝑅𝑉 → (𝑅s 𝐵) = (Scalar‘((subringAlg ‘𝑅)‘𝐵)))
127, 11eqtr3d 2768 . . . . . . . . 9 (𝑅𝑉𝑅 = (Scalar‘((subringAlg ‘𝑅)‘𝐵)))
1312oveq1d 7361 . . . . . . . 8 (𝑅𝑉 → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
1413adantl 481 . . . . . . 7 ((𝐼𝑊𝑅𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
15 fvex 6835 . . . . . . . . 9 ((subringAlg ‘𝑅)‘𝐵) ∈ V
16 rlmval 21125 . . . . . . . . . . . 12 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
176fveq2i 6825 . . . . . . . . . . . 12 ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
1816, 17eqtr4i 2757 . . . . . . . . . . 11 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘𝐵)
1918oveq1i 7356 . . . . . . . . . 10 ((ringLMod‘𝑅) ↑s 𝐼) = (((subringAlg ‘𝑅)‘𝐵) ↑s 𝐼)
20 eqid 2731 . . . . . . . . . 10 (Scalar‘((subringAlg ‘𝑅)‘𝐵)) = (Scalar‘((subringAlg ‘𝑅)‘𝐵))
2119, 20pwsval 17390 . . . . . . . . 9 ((((subringAlg ‘𝑅)‘𝐵) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2215, 21mpan 690 . . . . . . . 8 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2322adantr 480 . . . . . . 7 ((𝐼𝑊𝑅𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2414, 23eqtr4d 2769 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((ringLMod‘𝑅) ↑s 𝐼))
251fveq2i 6825 . . . . . . 7 (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼))
2625a1i 11 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼)))
2724, 26oveq12d 7364 . . . . 5 ((𝐼𝑊𝑅𝑉) → ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
285, 27eqtr4d 2769 . . . 4 ((𝐼𝑊𝑅𝑉) → (𝑅 freeLMod 𝐼) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
291, 28eqtrid 2778 . . 3 ((𝐼𝑊𝑅𝑉) → 𝑌 = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
3029fveq2d 6826 . 2 ((𝐼𝑊𝑅𝑉) → (·𝑖𝑌) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))))
31 fvex 6835 . . . 4 (Base‘𝑌) ∈ V
32 eqid 2731 . . . . 5 ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))
33 eqid 2731 . . . . 5 (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
3432, 33ressip 17249 . . . 4 ((Base‘𝑌) ∈ V → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))))
3531, 34ax-mp 5 . . 3 (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
36 eqid 2731 . . . . 5 (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))
37 simpr 484 . . . . 5 ((𝐼𝑊𝑅𝑉) → 𝑅𝑉)
38 snex 5372 . . . . . . 7 {((subringAlg ‘𝑅)‘𝐵)} ∈ V
39 xpexg 7683 . . . . . . 7 ((𝐼𝑊 ∧ {((subringAlg ‘𝑅)‘𝐵)} ∈ V) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
4038, 39mpan2 691 . . . . . 6 (𝐼𝑊 → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
4140adantr 480 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
42 eqid 2731 . . . . 5 (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
4315snnz 4726 . . . . . 6 {((subringAlg ‘𝑅)‘𝐵)} ≠ ∅
44 dmxp 5868 . . . . . 6 ({((subringAlg ‘𝑅)‘𝐵)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼)
4543, 44mp1i 13 . . . . 5 ((𝐼𝑊𝑅𝑉) → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼)
4636, 37, 41, 42, 45, 33prdsip 17365 . . . 4 ((𝐼𝑊𝑅𝑉) → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))))))
4736, 37, 41, 42, 45prdsbas 17361 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)))
48 eqidd 2732 . . . . . . . . . 10 (𝑥𝐼 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵))
499a1i 11 . . . . . . . . . 10 (𝑥𝐼𝐵 ⊆ (Base‘𝑅))
5048, 49srabase 21111 . . . . . . . . 9 (𝑥𝐼 → (Base‘𝑅) = (Base‘((subringAlg ‘𝑅)‘𝐵)))
516a1i 11 . . . . . . . . 9 (𝑥𝐼𝐵 = (Base‘𝑅))
5215fvconst2 7138 . . . . . . . . . 10 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥) = ((subringAlg ‘𝑅)‘𝐵))
5352fveq2d 6826 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = (Base‘((subringAlg ‘𝑅)‘𝐵)))
5450, 51, 533eqtr4rd 2777 . . . . . . . 8 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵)
5554adantl 481 . . . . . . 7 (((𝐼𝑊𝑅𝑉) ∧ 𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵)
5655ixpeq2dva 8836 . . . . . 6 ((𝐼𝑊𝑅𝑉) → X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = X𝑥𝐼 𝐵)
576fvexi 6836 . . . . . . . 8 𝐵 ∈ V
58 ixpconstg 8830 . . . . . . . 8 ((𝐼𝑊𝐵 ∈ V) → X𝑥𝐼 𝐵 = (𝐵m 𝐼))
5957, 58mpan2 691 . . . . . . 7 (𝐼𝑊X𝑥𝐼 𝐵 = (𝐵m 𝐼))
6059adantr 480 . . . . . 6 ((𝐼𝑊𝑅𝑉) → X𝑥𝐼 𝐵 = (𝐵m 𝐼))
6147, 56, 603eqtrd 2770 . . . . 5 ((𝐼𝑊𝑅𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝐵m 𝐼))
62 frlmphl.t . . . . . . . . . 10 · = (.r𝑅)
6352, 49sraip 21116 . . . . . . . . . 10 (𝑥𝐼 → (.r𝑅) = (·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)))
6462, 63eqtr2id 2779 . . . . . . . . 9 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = · )
6564oveqd 7363 . . . . . . . 8 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
6665mpteq2ia 5184 . . . . . . 7 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
6766oveq2i 7357 . . . . . 6 (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
6867a1i 11 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
6961, 61, 68mpoeq123dv 7421 . . . 4 ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7046, 69eqtrd 2766 . . 3 ((𝐼𝑊𝑅𝑉) → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7135, 70eqtr3id 2780 . 2 ((𝐼𝑊𝑅𝑉) → (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7230, 71eqtr2d 2767 1 ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cmpt 5170   × cxp 5612  dom cdm 5614  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Xcixp 8821  Basecbs 17120  s cress 17141  .rcmulr 17162  Scalarcsca 17164  ·𝑖cip 17166   Σg cgsu 17344  Xscprds 17349  s cpws 17350  subringAlg csra 21105  ringLModcrglmod 21106   freeLMod cfrlm 21683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-prds 17351  df-pws 17353  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684
This theorem is referenced by:  frlmipval  21716  frlmphl  21718
  Copyright terms: Public domain W3C validator