MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr2 Structured version   Visualization version   GIF version

Theorem elptr2 23582
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
elptr2.1 (𝜑𝐴𝑉)
elptr2.2 (𝜑𝑊 ∈ Fin)
elptr2.3 ((𝜑𝑘𝐴) → 𝑆 ∈ (𝐹𝑘))
elptr2.4 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝑆 = (𝐹𝑘))
Assertion
Ref Expression
elptr2 (𝜑X𝑘𝐴 𝑆𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝑔,𝑦   𝜑,𝑘   𝑔,𝑘,𝑧,𝐴,𝑥,𝑦   𝑔,𝐹,𝑘,𝑥,𝑦,𝑧   𝑆,𝑔,𝑥   𝑔,𝑉,𝑘,𝑥,𝑦,𝑧   𝑘,𝑊,𝑦   𝑦,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑔)   𝐵(𝑥,𝑦,𝑧,𝑔)   𝑆(𝑧,𝑘)   𝑊(𝑥,𝑧,𝑔)

Proof of Theorem elptr2
StepHypRef Expression
1 nffvmpt1 6917 . . . 4 𝑘((𝑘𝐴𝑆)‘𝑦)
2 nfcv 2905 . . . 4 𝑦((𝑘𝐴𝑆)‘𝑘)
3 fveq2 6906 . . . 4 (𝑦 = 𝑘 → ((𝑘𝐴𝑆)‘𝑦) = ((𝑘𝐴𝑆)‘𝑘))
41, 2, 3cbvixp 8954 . . 3 X𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) = X𝑘𝐴 ((𝑘𝐴𝑆)‘𝑘)
5 simpr 484 . . . . 5 ((𝜑𝑘𝐴) → 𝑘𝐴)
6 elptr2.3 . . . . 5 ((𝜑𝑘𝐴) → 𝑆 ∈ (𝐹𝑘))
7 eqid 2737 . . . . . 6 (𝑘𝐴𝑆) = (𝑘𝐴𝑆)
87fvmpt2 7027 . . . . 5 ((𝑘𝐴𝑆 ∈ (𝐹𝑘)) → ((𝑘𝐴𝑆)‘𝑘) = 𝑆)
95, 6, 8syl2anc 584 . . . 4 ((𝜑𝑘𝐴) → ((𝑘𝐴𝑆)‘𝑘) = 𝑆)
109ixpeq2dva 8952 . . 3 (𝜑X𝑘𝐴 ((𝑘𝐴𝑆)‘𝑘) = X𝑘𝐴 𝑆)
114, 10eqtrid 2789 . 2 (𝜑X𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) = X𝑘𝐴 𝑆)
12 elptr2.1 . . 3 (𝜑𝐴𝑉)
136ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘𝐴 𝑆 ∈ (𝐹𝑘))
147fnmpt 6708 . . . 4 (∀𝑘𝐴 𝑆 ∈ (𝐹𝑘) → (𝑘𝐴𝑆) Fn 𝐴)
1513, 14syl 17 . . 3 (𝜑 → (𝑘𝐴𝑆) Fn 𝐴)
169, 6eqeltrd 2841 . . . . 5 ((𝜑𝑘𝐴) → ((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘))
1716ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘𝐴 ((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘))
181nfel1 2922 . . . . 5 𝑘((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦)
19 nfv 1914 . . . . 5 𝑦((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘)
20 fveq2 6906 . . . . . 6 (𝑦 = 𝑘 → (𝐹𝑦) = (𝐹𝑘))
213, 20eleq12d 2835 . . . . 5 (𝑦 = 𝑘 → (((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦) ↔ ((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘)))
2218, 19, 21cbvralw 3306 . . . 4 (∀𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦) ↔ ∀𝑘𝐴 ((𝑘𝐴𝑆)‘𝑘) ∈ (𝐹𝑘))
2317, 22sylibr 234 . . 3 (𝜑 → ∀𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦))
24 elptr2.2 . . 3 (𝜑𝑊 ∈ Fin)
25 eldifi 4131 . . . . . . 7 (𝑘 ∈ (𝐴𝑊) → 𝑘𝐴)
2625, 9sylan2 593 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝑊)) → ((𝑘𝐴𝑆)‘𝑘) = 𝑆)
27 elptr2.4 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝑆 = (𝐹𝑘))
2826, 27eqtrd 2777 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → ((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘))
2928ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘))
301nfeq1 2921 . . . . 5 𝑘((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦)
31 nfv 1914 . . . . 5 𝑦((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘)
3220unieqd 4920 . . . . . 6 (𝑦 = 𝑘 (𝐹𝑦) = (𝐹𝑘))
333, 32eqeq12d 2753 . . . . 5 (𝑦 = 𝑘 → (((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦) ↔ ((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘)))
3430, 31, 33cbvralw 3306 . . . 4 (∀𝑦 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦) ↔ ∀𝑘 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑘) = (𝐹𝑘))
3529, 34sylibr 234 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦))
36 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
3736elptr 23581 . . 3 ((𝐴𝑉 ∧ ((𝑘𝐴𝑆) Fn 𝐴 ∧ ∀𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)((𝑘𝐴𝑆)‘𝑦) = (𝐹𝑦))) → X𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ 𝐵)
3812, 15, 23, 24, 35, 37syl122anc 1381 . 2 (𝜑X𝑦𝐴 ((𝑘𝐴𝑆)‘𝑦) ∈ 𝐵)
3911, 38eqeltrrd 2842 1 (𝜑X𝑘𝐴 𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wral 3061  wrex 3070  cdif 3948   cuni 4907  cmpt 5225   Fn wfn 6556  cfv 6561  Xcixp 8937  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ixp 8938
This theorem is referenced by:  ptbasid  23583  ptbasin  23585  ptpjpre2  23588  ptopn  23591
  Copyright terms: Public domain W3C validator