Proof of Theorem elptr2
Step | Hyp | Ref
| Expression |
1 | | nffvmpt1 6785 |
. . . 4
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) |
2 | | nfcv 2907 |
. . . 4
⊢
Ⅎ𝑦((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) |
3 | | fveq2 6774 |
. . . 4
⊢ (𝑦 = 𝑘 → ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) = ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘)) |
4 | 1, 2, 3 | cbvixp 8702 |
. . 3
⊢ X𝑦 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) = X𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) |
5 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
6 | | elptr2.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) |
7 | | eqid 2738 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ 𝑆) = (𝑘 ∈ 𝐴 ↦ 𝑆) |
8 | 7 | fvmpt2 6886 |
. . . . 5
⊢ ((𝑘 ∈ 𝐴 ∧ 𝑆 ∈ (𝐹‘𝑘)) → ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = 𝑆) |
9 | 5, 6, 8 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = 𝑆) |
10 | 9 | ixpeq2dva 8700 |
. . 3
⊢ (𝜑 → X𝑘 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = X𝑘 ∈ 𝐴 𝑆) |
11 | 4, 10 | eqtrid 2790 |
. 2
⊢ (𝜑 → X𝑦 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) = X𝑘 ∈ 𝐴 𝑆) |
12 | | elptr2.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
13 | 6 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑆 ∈ (𝐹‘𝑘)) |
14 | 7 | fnmpt 6573 |
. . . 4
⊢
(∀𝑘 ∈
𝐴 𝑆 ∈ (𝐹‘𝑘) → (𝑘 ∈ 𝐴 ↦ 𝑆) Fn 𝐴) |
15 | 13, 14 | syl 17 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑆) Fn 𝐴) |
16 | 9, 6 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) ∈ (𝐹‘𝑘)) |
17 | 16 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) ∈ (𝐹‘𝑘)) |
18 | 1 | nfel1 2923 |
. . . . 5
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) ∈ (𝐹‘𝑦) |
19 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑦((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) ∈ (𝐹‘𝑘) |
20 | | fveq2 6774 |
. . . . . 6
⊢ (𝑦 = 𝑘 → (𝐹‘𝑦) = (𝐹‘𝑘)) |
21 | 3, 20 | eleq12d 2833 |
. . . . 5
⊢ (𝑦 = 𝑘 → (((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) ∈ (𝐹‘𝑦) ↔ ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) ∈ (𝐹‘𝑘))) |
22 | 18, 19, 21 | cbvralw 3373 |
. . . 4
⊢
(∀𝑦 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) ∈ (𝐹‘𝑦) ↔ ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) ∈ (𝐹‘𝑘)) |
23 | 17, 22 | sylibr 233 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) ∈ (𝐹‘𝑦)) |
24 | | elptr2.2 |
. . 3
⊢ (𝜑 → 𝑊 ∈ Fin) |
25 | | eldifi 4061 |
. . . . . . 7
⊢ (𝑘 ∈ (𝐴 ∖ 𝑊) → 𝑘 ∈ 𝐴) |
26 | 25, 9 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = 𝑆) |
27 | | elptr2.4 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) |
28 | 26, 27 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = ∪ (𝐹‘𝑘)) |
29 | 28 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∖ 𝑊)((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = ∪ (𝐹‘𝑘)) |
30 | 1 | nfeq1 2922 |
. . . . 5
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) = ∪ (𝐹‘𝑦) |
31 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑦((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = ∪ (𝐹‘𝑘) |
32 | 20 | unieqd 4853 |
. . . . . 6
⊢ (𝑦 = 𝑘 → ∪ (𝐹‘𝑦) = ∪ (𝐹‘𝑘)) |
33 | 3, 32 | eqeq12d 2754 |
. . . . 5
⊢ (𝑦 = 𝑘 → (((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) = ∪ (𝐹‘𝑦) ↔ ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = ∪ (𝐹‘𝑘))) |
34 | 30, 31, 33 | cbvralw 3373 |
. . . 4
⊢
(∀𝑦 ∈
(𝐴 ∖ 𝑊)((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) = ∪ (𝐹‘𝑦) ↔ ∀𝑘 ∈ (𝐴 ∖ 𝑊)((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑘) = ∪ (𝐹‘𝑘)) |
35 | 29, 34 | sylibr 233 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ (𝐴 ∖ 𝑊)((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) = ∪ (𝐹‘𝑦)) |
36 | | ptbas.1 |
. . . 4
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
37 | 36 | elptr 22724 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑘 ∈ 𝐴 ↦ 𝑆) Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) ∈ 𝐵) |
38 | 12, 15, 23, 24, 35, 37 | syl122anc 1378 |
. 2
⊢ (𝜑 → X𝑦 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝑆)‘𝑦) ∈ 𝐵) |
39 | 11, 38 | eqeltrrd 2840 |
1
⊢ (𝜑 → X𝑘 ∈
𝐴 𝑆 ∈ 𝐵) |