Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem2 Structured version   Visualization version   GIF version

Theorem ovnovollem2 42946
Description: if 𝐼 is a cover of (𝐵m {𝐴}) in ℝ^1, then 𝐹 is the corresponding cover in the reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem2.a (𝜑𝐴𝑉)
ovnovollem2.b (𝜑𝐵𝑊)
ovnovollem2.i (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
ovnovollem2.s (𝜑 → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
ovnovollem2.z (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
ovnovollem2.f 𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼𝑗)‘𝐴))
Assertion
Ref Expression
ovnovollem2 (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑓   𝑓,𝐹   𝑗,𝐹,𝑘   𝑘,𝐼   𝑘,𝑉   𝑓,𝑍   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑗,𝑘)   𝐼(𝑓,𝑗)   𝑉(𝑓,𝑗)   𝑊(𝑓,𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem ovnovollem2
StepHypRef Expression
1 ovnovollem2.i . . . . . . . . 9 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
2 elmapi 8430 . . . . . . . . 9 (𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
31, 2syl 17 . . . . . . . 8 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
43adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
5 simpr 487 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
64, 5ffvelrnd 6854 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m {𝐴}))
7 elmapi 8430 . . . . . 6 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m {𝐴}) → (𝐼𝑗):{𝐴}⟶(ℝ × ℝ))
86, 7syl 17 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):{𝐴}⟶(ℝ × ℝ))
9 ovnovollem2.a . . . . . . 7 (𝜑𝐴𝑉)
10 snidg 4601 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
119, 10syl 17 . . . . . 6 (𝜑𝐴 ∈ {𝐴})
1211adantr 483 . . . . 5 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ {𝐴})
138, 12ffvelrnd 6854 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗)‘𝐴) ∈ (ℝ × ℝ))
14 ovnovollem2.f . . . 4 𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼𝑗)‘𝐴))
1513, 14fmptd 6880 . . 3 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
16 reex 10630 . . . . . 6 ℝ ∈ V
1716, 16xpex 7478 . . . . 5 (ℝ × ℝ) ∈ V
18 nnex 11646 . . . . 5 ℕ ∈ V
1917, 18elmap 8437 . . . 4 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ↔ 𝐹:ℕ⟶(ℝ × ℝ))
2019a1i 11 . . 3 (𝜑 → (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ↔ 𝐹:ℕ⟶(ℝ × ℝ)))
2115, 20mpbird 259 . 2 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
22 ovnovollem2.s . . . . . 6 (𝜑 → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
23 elsni 4586 . . . . . . . . . . . . 13 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
2423fveq2d 6676 . . . . . . . . . . . 12 (𝑘 ∈ {𝐴} → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝐴))
2524adantl 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝐴))
26 elmapfun 8432 . . . . . . . . . . . . . 14 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m {𝐴}) → Fun (𝐼𝑗))
276, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → Fun (𝐼𝑗))
288fdmd 6525 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = {𝐴})
2928eqcomd 2829 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → {𝐴} = dom (𝐼𝑗))
3012, 29eleqtrd 2917 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ dom (𝐼𝑗))
31 fvco 6761 . . . . . . . . . . . . 13 ((Fun (𝐼𝑗) ∧ 𝐴 ∈ dom (𝐼𝑗)) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
3227, 30, 31syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
3332adantr 483 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
34 id 22 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
35 fvexd 6687 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝐴) ∈ V)
3614fvmpt2 6781 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ ((𝐼𝑗)‘𝐴) ∈ V) → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
3734, 35, 36syl2anc 586 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
3837eqcomd 2829 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝐴) = (𝐹𝑗))
3938fveq2d 6676 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ([,)‘((𝐼𝑗)‘𝐴)) = ([,)‘(𝐹𝑗)))
4039adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘((𝐼𝑗)‘𝐴)) = ([,)‘(𝐹𝑗)))
4115ffund 6520 . . . . . . . . . . . . . . . 16 (𝜑 → Fun 𝐹)
4241adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → Fun 𝐹)
4314, 13dmmptd 6495 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom 𝐹 = ℕ)
4443eqcomd 2829 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ = dom 𝐹)
4544adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ℕ = dom 𝐹)
465, 45eleqtrd 2917 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹)
47 fvco 6761 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
4842, 46, 47syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
4948eqcomd 2829 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) = (([,) ∘ 𝐹)‘𝑗))
5040, 49eqtrd 2858 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ([,)‘((𝐼𝑗)‘𝐴)) = (([,) ∘ 𝐹)‘𝑗))
5150adantr 483 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼𝑗)‘𝐴)) = (([,) ∘ 𝐹)‘𝑗))
5225, 33, 513eqtrd 2862 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ 𝐹)‘𝑗))
5352ixpeq2dva 8478 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗))
54 snex 5334 . . . . . . . . . . 11 {𝐴} ∈ V
55 fvex 6685 . . . . . . . . . . 11 (([,) ∘ 𝐹)‘𝑗) ∈ V
5654, 55ixpconst 8473 . . . . . . . . . 10 X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})
5756a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
5853, 57eqtrd 2858 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
5958iuneq2dv 4945 . . . . . . 7 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
60 nfv 1915 . . . . . . . 8 𝑗𝜑
6118a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
62 fvexd 6687 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) ∈ V)
6360, 61, 62, 9iunmapsn 41487 . . . . . . 7 (𝜑 𝑗 ∈ ℕ ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
6459, 63eqtrd 2858 . . . . . 6 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
6522, 64sseqtrd 4009 . . . . 5 (𝜑 → (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
66 ovnovollem2.b . . . . . 6 (𝜑𝐵𝑊)
6718, 55iunex 7671 . . . . . . 7 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V
6867a1i 11 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V)
6954a1i 11 . . . . . 6 (𝜑 → {𝐴} ∈ V)
7011ne0d 4303 . . . . . 6 (𝜑 → {𝐴} ≠ ∅)
7166, 68, 69, 70mapss2 41475 . . . . 5 (𝜑 → (𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↔ (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})))
7265, 71mpbird 259 . . . 4 (𝜑𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
73 icof 41489 . . . . . . . 8 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
7473a1i 11 . . . . . . 7 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
75 rexpssxrxp 10688 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
7675a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
7774, 76, 15fcoss 41480 . . . . . 6 (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫 ℝ*)
7877ffnd 6517 . . . . 5 (𝜑 → ([,) ∘ 𝐹) Fn ℕ)
79 fniunfv 7008 . . . . 5 (([,) ∘ 𝐹) Fn ℕ → 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
8078, 79syl 17 . . . 4 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
8172, 80sseqtrd 4009 . . 3 (𝜑𝐵 ran ([,) ∘ 𝐹))
82 ovnovollem2.z . . . 4 (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
83 nfcv 2979 . . . . . . 7 𝑗𝐹
84 ressxr 10687 . . . . . . . . . 10 ℝ ⊆ ℝ*
85 xpss2 5577 . . . . . . . . . 10 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
8684, 85ax-mp 5 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
8786a1i 11 . . . . . . . 8 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
8815, 87fssd 6530 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
8983, 88volicofmpt 42289 . . . . . 6 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))))
909adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝐴𝑉)
91 fvexd 6687 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗)‘𝐴) ∈ V)
925, 91, 36syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
9392, 13eqeltrd 2915 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ × ℝ))
94 1st2nd2 7730 . . . . . . . . . . . . . . . 16 ((𝐹𝑗) ∈ (ℝ × ℝ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
9593, 94syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
9695fveq2d 6676 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩))
97 df-ov 7161 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
9897eqcomi 2832 . . . . . . . . . . . . . . 15 ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))
9998a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
10048, 96, 993eqtrd 2862 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
10132, 50, 1003eqtrd 2862 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
102101fveq2d 6676 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) = (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))))
103 xp1st 7723 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
10493, 103syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
105 xp2nd 7724 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
10693, 105syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
107 volicore 42870 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑗)) ∈ ℝ ∧ (2nd ‘(𝐹𝑗)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
108104, 106, 107syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
109102, 108eqeltrd 2915 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℝ)
110109recnd 10671 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ)
111 2fveq3 6677 . . . . . . . . . 10 (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
112111prodsn 15318 . . . . . . . . 9 ((𝐴𝑉 ∧ (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
11390, 110, 112syl2anc 586 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
114113, 102eqtr2d 2859 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
115114mpteq2dva 5163 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
11689, 115eqtrd 2858 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
117116fveq2d 6676 . . . 4 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
11882, 117eqtr4d 2861 . . 3 (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
11981, 118jca 514 . 2 (𝜑 → (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹))))
120 coeq2 5731 . . . . . . 7 (𝑓 = 𝐹 → ([,) ∘ 𝑓) = ([,) ∘ 𝐹))
121120rneqd 5810 . . . . . 6 (𝑓 = 𝐹 → ran ([,) ∘ 𝑓) = ran ([,) ∘ 𝐹))
122121unieqd 4854 . . . . 5 (𝑓 = 𝐹 ran ([,) ∘ 𝑓) = ran ([,) ∘ 𝐹))
123122sseq2d 4001 . . . 4 (𝑓 = 𝐹 → (𝐵 ran ([,) ∘ 𝑓) ↔ 𝐵 ran ([,) ∘ 𝐹)))
124 coeq2 5731 . . . . . 6 (𝑓 = 𝐹 → ((vol ∘ [,)) ∘ 𝑓) = ((vol ∘ [,)) ∘ 𝐹))
125124fveq2d 6676 . . . . 5 (𝑓 = 𝐹 → (Σ^‘((vol ∘ [,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
126125eqeq2d 2834 . . . 4 (𝑓 = 𝐹 → (𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)) ↔ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹))))
127123, 126anbi12d 632 . . 3 (𝑓 = 𝐹 → ((𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))))
128127rspcev 3625 . 2 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
12921, 119, 128syl2anc 586 1 (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  wss 3938  𝒫 cpw 4541  {csn 4569  cop 4575   cuni 4840   ciun 4921  cmpt 5148   × cxp 5555  dom cdm 5557  ran crn 5558  ccom 5561  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  m cmap 8408  Xcixp 8463  cc 10537  cr 10538  *cxr 10676  cn 11640  [,)cico 12743  cprod 15261  volcvol 24066  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-prod 15262  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997  df-ovol 24067  df-vol 24068
This theorem is referenced by:  ovnovollem3  42947
  Copyright terms: Public domain W3C validator