Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem2 Structured version   Visualization version   GIF version

Theorem ovnovollem2 43296
Description: if 𝐼 is a cover of (𝐵m {𝐴}) in ℝ^1, then 𝐹 is the corresponding cover in the reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem2.a (𝜑𝐴𝑉)
ovnovollem2.b (𝜑𝐵𝑊)
ovnovollem2.i (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
ovnovollem2.s (𝜑 → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
ovnovollem2.z (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
ovnovollem2.f 𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼𝑗)‘𝐴))
Assertion
Ref Expression
ovnovollem2 (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑓   𝑓,𝐹   𝑗,𝐹,𝑘   𝑘,𝐼   𝑘,𝑉   𝑓,𝑍   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑗,𝑘)   𝐼(𝑓,𝑗)   𝑉(𝑓,𝑗)   𝑊(𝑓,𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem ovnovollem2
StepHypRef Expression
1 ovnovollem2.i . . . . . . . . 9 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
2 elmapi 8411 . . . . . . . . 9 (𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
31, 2syl 17 . . . . . . . 8 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
43adantr 484 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
5 simpr 488 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
64, 5ffvelrnd 6829 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) ∈ ((ℝ × ℝ) ↑m {𝐴}))
7 elmapi 8411 . . . . . 6 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m {𝐴}) → (𝐼𝑗):{𝐴}⟶(ℝ × ℝ))
86, 7syl 17 . . . . 5 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗):{𝐴}⟶(ℝ × ℝ))
9 ovnovollem2.a . . . . . . 7 (𝜑𝐴𝑉)
10 snidg 4559 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
119, 10syl 17 . . . . . 6 (𝜑𝐴 ∈ {𝐴})
1211adantr 484 . . . . 5 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ {𝐴})
138, 12ffvelrnd 6829 . . . 4 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗)‘𝐴) ∈ (ℝ × ℝ))
14 ovnovollem2.f . . . 4 𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼𝑗)‘𝐴))
1513, 14fmptd 6855 . . 3 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
16 reex 10617 . . . . . 6 ℝ ∈ V
1716, 16xpex 7456 . . . . 5 (ℝ × ℝ) ∈ V
18 nnex 11631 . . . . 5 ℕ ∈ V
1917, 18elmap 8418 . . . 4 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ↔ 𝐹:ℕ⟶(ℝ × ℝ))
2019a1i 11 . . 3 (𝜑 → (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ↔ 𝐹:ℕ⟶(ℝ × ℝ)))
2115, 20mpbird 260 . 2 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
22 ovnovollem2.s . . . . . 6 (𝜑 → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
23 elsni 4542 . . . . . . . . . . . . 13 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
2423fveq2d 6649 . . . . . . . . . . . 12 (𝑘 ∈ {𝐴} → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝐴))
2524adantl 485 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝐴))
26 elmapfun 8413 . . . . . . . . . . . . . 14 ((𝐼𝑗) ∈ ((ℝ × ℝ) ↑m {𝐴}) → Fun (𝐼𝑗))
276, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → Fun (𝐼𝑗))
288fdmd 6497 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = {𝐴})
2928eqcomd 2804 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → {𝐴} = dom (𝐼𝑗))
3012, 29eleqtrd 2892 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ dom (𝐼𝑗))
31 fvco 6736 . . . . . . . . . . . . 13 ((Fun (𝐼𝑗) ∧ 𝐴 ∈ dom (𝐼𝑗)) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
3227, 30, 31syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
3332adantr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝐴) = ([,)‘((𝐼𝑗)‘𝐴)))
34 id 22 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
35 fvexd 6660 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝐴) ∈ V)
3614fvmpt2 6756 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ ((𝐼𝑗)‘𝐴) ∈ V) → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
3734, 35, 36syl2anc 587 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
3837eqcomd 2804 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝐴) = (𝐹𝑗))
3938fveq2d 6649 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ([,)‘((𝐼𝑗)‘𝐴)) = ([,)‘(𝐹𝑗)))
4039adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘((𝐼𝑗)‘𝐴)) = ([,)‘(𝐹𝑗)))
4115ffund 6491 . . . . . . . . . . . . . . . 16 (𝜑 → Fun 𝐹)
4241adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → Fun 𝐹)
4314, 13dmmptd 6465 . . . . . . . . . . . . . . . . . 18 (𝜑 → dom 𝐹 = ℕ)
4443eqcomd 2804 . . . . . . . . . . . . . . . . 17 (𝜑 → ℕ = dom 𝐹)
4544adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ℕ = dom 𝐹)
465, 45eleqtrd 2892 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹)
47 fvco 6736 . . . . . . . . . . . . . . 15 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
4842, 46, 47syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
4948eqcomd 2804 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) = (([,) ∘ 𝐹)‘𝑗))
5040, 49eqtrd 2833 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → ([,)‘((𝐼𝑗)‘𝐴)) = (([,) ∘ 𝐹)‘𝑗))
5150adantr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼𝑗)‘𝐴)) = (([,) ∘ 𝐹)‘𝑗))
5225, 33, 513eqtrd 2837 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = (([,) ∘ 𝐹)‘𝑗))
5352ixpeq2dva 8459 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗))
54 snex 5297 . . . . . . . . . . 11 {𝐴} ∈ V
55 fvex 6658 . . . . . . . . . . 11 (([,) ∘ 𝐹)‘𝑗) ∈ V
5654, 55ixpconst 8454 . . . . . . . . . 10 X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})
5756a1i 11 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
5853, 57eqtrd 2833 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
5958iuneq2dv 4905 . . . . . . 7 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
60 nfv 1915 . . . . . . . 8 𝑗𝜑
6118a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
62 fvexd 6660 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) ∈ V)
6360, 61, 62, 9iunmapsn 41846 . . . . . . 7 (𝜑 𝑗 ∈ ℕ ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
6459, 63eqtrd 2833 . . . . . 6 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
6522, 64sseqtrd 3955 . . . . 5 (𝜑 → (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
66 ovnovollem2.b . . . . . 6 (𝜑𝐵𝑊)
6718, 55iunex 7651 . . . . . . 7 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V
6867a1i 11 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V)
6954a1i 11 . . . . . 6 (𝜑 → {𝐴} ∈ V)
7011ne0d 4251 . . . . . 6 (𝜑 → {𝐴} ≠ ∅)
7166, 68, 69, 70mapss2 41834 . . . . 5 (𝜑 → (𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↔ (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})))
7265, 71mpbird 260 . . . 4 (𝜑𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
73 icof 41848 . . . . . . . 8 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
7473a1i 11 . . . . . . 7 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
75 rexpssxrxp 10675 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
7675a1i 11 . . . . . . 7 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
7774, 76, 15fcoss 41839 . . . . . 6 (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫 ℝ*)
7877ffnd 6488 . . . . 5 (𝜑 → ([,) ∘ 𝐹) Fn ℕ)
79 fniunfv 6984 . . . . 5 (([,) ∘ 𝐹) Fn ℕ → 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
8078, 79syl 17 . . . 4 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
8172, 80sseqtrd 3955 . . 3 (𝜑𝐵 ran ([,) ∘ 𝐹))
82 ovnovollem2.z . . . 4 (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
83 nfcv 2955 . . . . . . 7 𝑗𝐹
84 ressxr 10674 . . . . . . . . . 10 ℝ ⊆ ℝ*
85 xpss2 5539 . . . . . . . . . 10 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
8684, 85ax-mp 5 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
8786a1i 11 . . . . . . . 8 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
8815, 87fssd 6502 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
8983, 88volicofmpt 42639 . . . . . 6 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))))
909adantr 484 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝐴𝑉)
91 fvexd 6660 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ ℕ) → ((𝐼𝑗)‘𝐴) ∈ V)
925, 91, 36syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ((𝐼𝑗)‘𝐴))
9392, 13eqeltrd 2890 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ × ℝ))
94 1st2nd2 7710 . . . . . . . . . . . . . . . 16 ((𝐹𝑗) ∈ (ℝ × ℝ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
9593, 94syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
9695fveq2d 6649 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩))
97 df-ov 7138 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
9897eqcomi 2807 . . . . . . . . . . . . . . 15 ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))
9998a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
10048, 96, 993eqtrd 2837 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
10132, 50, 1003eqtrd 2837 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
102101fveq2d 6649 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) = (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))))
103 xp1st 7703 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
10493, 103syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
105 xp2nd 7704 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
10693, 105syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
107 volicore 43220 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑗)) ∈ ℝ ∧ (2nd ‘(𝐹𝑗)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
108104, 106, 107syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
109102, 108eqeltrd 2890 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℝ)
110109recnd 10658 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ)
111 2fveq3 6650 . . . . . . . . . 10 (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
112111prodsn 15308 . . . . . . . . 9 ((𝐴𝑉 ∧ (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
11390, 110, 112syl2anc 587 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
114113, 102eqtr2d 2834 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
115114mpteq2dva 5125 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
11689, 115eqtrd 2833 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
117116fveq2d 6649 . . . 4 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
11882, 117eqtr4d 2836 . . 3 (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
11981, 118jca 515 . 2 (𝜑 → (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹))))
120 coeq2 5693 . . . . . . 7 (𝑓 = 𝐹 → ([,) ∘ 𝑓) = ([,) ∘ 𝐹))
121120rneqd 5772 . . . . . 6 (𝑓 = 𝐹 → ran ([,) ∘ 𝑓) = ran ([,) ∘ 𝐹))
122121unieqd 4814 . . . . 5 (𝑓 = 𝐹 ran ([,) ∘ 𝑓) = ran ([,) ∘ 𝐹))
123122sseq2d 3947 . . . 4 (𝑓 = 𝐹 → (𝐵 ran ([,) ∘ 𝑓) ↔ 𝐵 ran ([,) ∘ 𝐹)))
124 coeq2 5693 . . . . . 6 (𝑓 = 𝐹 → ((vol ∘ [,)) ∘ 𝑓) = ((vol ∘ [,)) ∘ 𝐹))
125124fveq2d 6649 . . . . 5 (𝑓 = 𝐹 → (Σ^‘((vol ∘ [,)) ∘ 𝑓)) = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
126125eqeq2d 2809 . . . 4 (𝑓 = 𝐹 → (𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓)) ↔ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹))))
127123, 126anbi12d 633 . . 3 (𝑓 = 𝐹 → ((𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))))
128127rspcev 3571 . 2 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ (𝐵 ran ([,) ∘ 𝐹) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))) → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
12921, 119, 128syl2anc 587 1 (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ) ↑m ℕ)(𝐵 ran ([,) ∘ 𝑓) ∧ 𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  wss 3881  𝒫 cpw 4497  {csn 4525  cop 4531   cuni 4800   ciun 4881  cmpt 5110   × cxp 5517  dom cdm 5519  ran crn 5520  ccom 5523  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  m cmap 8389  Xcixp 8444  cc 10524  cr 10525  *cxr 10663  cn 11625  [,)cico 12728  cprod 15251  volcvol 24067  Σ^csumge0 43001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-prod 15252  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069
This theorem is referenced by:  ovnovollem3  43297
  Copyright terms: Public domain W3C validator