Proof of Theorem ovnovollem2
Step | Hyp | Ref
| Expression |
1 | | ovnovollem2.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ (((ℝ × ℝ)
↑m {𝐴})
↑m ℕ)) |
2 | | elmapi 8595 |
. . . . . . . . 9
⊢ (𝐼 ∈ (((ℝ ×
ℝ) ↑m {𝐴}) ↑m ℕ) → 𝐼:ℕ⟶((ℝ
× ℝ) ↑m {𝐴})) |
3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐼:ℕ⟶((ℝ × ℝ)
↑m {𝐴})) |
4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐼:ℕ⟶((ℝ × ℝ)
↑m {𝐴})) |
5 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
6 | 4, 5 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑m {𝐴})) |
7 | | elmapi 8595 |
. . . . . 6
⊢ ((𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑m {𝐴})
→ (𝐼‘𝑗):{𝐴}⟶(ℝ ×
ℝ)) |
8 | 6, 7 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑗):{𝐴}⟶(ℝ ×
ℝ)) |
9 | | ovnovollem2.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
10 | | snidg 4592 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ {𝐴}) |
13 | 8, 12 | ffvelrnd 6944 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑗)‘𝐴) ∈ (ℝ ×
ℝ)) |
14 | | ovnovollem2.f |
. . . 4
⊢ 𝐹 = (𝑗 ∈ ℕ ↦ ((𝐼‘𝑗)‘𝐴)) |
15 | 13, 14 | fmptd 6970 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ)) |
16 | | reex 10893 |
. . . . . 6
⊢ ℝ
∈ V |
17 | 16, 16 | xpex 7581 |
. . . . 5
⊢ (ℝ
× ℝ) ∈ V |
18 | | nnex 11909 |
. . . . 5
⊢ ℕ
∈ V |
19 | 17, 18 | elmap 8617 |
. . . 4
⊢ (𝐹 ∈ ((ℝ ×
ℝ) ↑m ℕ) ↔ 𝐹:ℕ⟶(ℝ ×
ℝ)) |
20 | 19 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐹 ∈ ((ℝ × ℝ)
↑m ℕ) ↔ 𝐹:ℕ⟶(ℝ ×
ℝ))) |
21 | 15, 20 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐹 ∈ ((ℝ × ℝ)
↑m ℕ)) |
22 | | ovnovollem2.s |
. . . . . 6
⊢ (𝜑 → (𝐵 ↑m {𝐴}) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘)) |
23 | | elsni 4575 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ {𝐴} → 𝑘 = 𝐴) |
24 | 23 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {𝐴} → (([,) ∘ (𝐼‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝐴)) |
25 | 24 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = (([,) ∘ (𝐼‘𝑗))‘𝐴)) |
26 | | elmapfun 8612 |
. . . . . . . . . . . . . 14
⊢ ((𝐼‘𝑗) ∈ ((ℝ × ℝ)
↑m {𝐴})
→ Fun (𝐼‘𝑗)) |
27 | 6, 26 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Fun (𝐼‘𝑗)) |
28 | 8 | fdmd 6595 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → dom (𝐼‘𝑗) = {𝐴}) |
29 | 28 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → {𝐴} = dom (𝐼‘𝑗)) |
30 | 12, 29 | eleqtrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ dom (𝐼‘𝑗)) |
31 | | fvco 6848 |
. . . . . . . . . . . . 13
⊢ ((Fun
(𝐼‘𝑗) ∧ 𝐴 ∈ dom (𝐼‘𝑗)) → (([,) ∘ (𝐼‘𝑗))‘𝐴) = ([,)‘((𝐼‘𝑗)‘𝐴))) |
32 | 27, 30, 31 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ (𝐼‘𝑗))‘𝐴) = ([,)‘((𝐼‘𝑗)‘𝐴))) |
33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼‘𝑗))‘𝐴) = ([,)‘((𝐼‘𝑗)‘𝐴))) |
34 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
35 | | fvexd 6771 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → ((𝐼‘𝑗)‘𝐴) ∈ V) |
36 | 14 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ ∧ ((𝐼‘𝑗)‘𝐴) ∈ V) → (𝐹‘𝑗) = ((𝐼‘𝑗)‘𝐴)) |
37 | 34, 35, 36 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → (𝐹‘𝑗) = ((𝐼‘𝑗)‘𝐴)) |
38 | 37 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → ((𝐼‘𝑗)‘𝐴) = (𝐹‘𝑗)) |
39 | 38 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ →
([,)‘((𝐼‘𝑗)‘𝐴)) = ([,)‘(𝐹‘𝑗))) |
40 | 39 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ([,)‘((𝐼‘𝑗)‘𝐴)) = ([,)‘(𝐹‘𝑗))) |
41 | 15 | ffund 6588 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → Fun 𝐹) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Fun 𝐹) |
43 | 14, 13 | dmmptd 6562 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom 𝐹 = ℕ) |
44 | 43 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℕ = dom 𝐹) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ℕ = dom 𝐹) |
46 | 5, 45 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹) |
47 | | fvco 6848 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐹 ∧ 𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹‘𝑗))) |
48 | 42, 46, 47 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹‘𝑗))) |
49 | 48 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ([,)‘(𝐹‘𝑗)) = (([,) ∘ 𝐹)‘𝑗)) |
50 | 40, 49 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ([,)‘((𝐼‘𝑗)‘𝐴)) = (([,) ∘ 𝐹)‘𝑗)) |
51 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼‘𝑗)‘𝐴)) = (([,) ∘ 𝐹)‘𝑗)) |
52 | 25, 33, 51 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼‘𝑗))‘𝑘) = (([,) ∘ 𝐹)‘𝑗)) |
53 | 52 | ixpeq2dva 8658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ 𝐹)‘𝑗)) |
54 | | snex 5349 |
. . . . . . . . . . 11
⊢ {𝐴} ∈ V |
55 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (([,)
∘ 𝐹)‘𝑗) ∈ V |
56 | 54, 55 | ixpconst 8653 |
. . . . . . . . . 10
⊢ X𝑘 ∈
{𝐴} (([,) ∘ 𝐹)‘𝑗) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) |
57 | 56 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} (([,) ∘ 𝐹)‘𝑗) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})) |
58 | 53, 57 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
{𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})) |
59 | 58 | iuneq2dv 4945 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ ((([,) ∘
𝐹)‘𝑗) ↑m {𝐴})) |
60 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑗𝜑 |
61 | 18 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℕ ∈
V) |
62 | | fvexd 6771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) ∈ V) |
63 | 60, 61, 62, 9 | iunmapsn 42646 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ ((([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = (∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗) ↑m {𝐴})) |
64 | 59, 63 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼‘𝑗))‘𝑘) = (∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗) ↑m {𝐴})) |
65 | 22, 64 | sseqtrd 3957 |
. . . . 5
⊢ (𝜑 → (𝐵 ↑m {𝐴}) ⊆ (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})) |
66 | | ovnovollem2.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
67 | 18, 55 | iunex 7784 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V |
68 | 67 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V) |
69 | 54 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝐴} ∈ V) |
70 | 11 | ne0d 4266 |
. . . . . 6
⊢ (𝜑 → {𝐴} ≠ ∅) |
71 | 66, 68, 69, 70 | mapss2 42634 |
. . . . 5
⊢ (𝜑 → (𝐵 ⊆ ∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗) ↔ (𝐵 ↑m {𝐴}) ⊆ (∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))) |
72 | 65, 71 | mpbird 256 |
. . . 4
⊢ (𝜑 → 𝐵 ⊆ ∪
𝑗 ∈ ℕ (([,)
∘ 𝐹)‘𝑗)) |
73 | | icof 42648 |
. . . . . . . 8
⊢
[,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
74 | 73 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → [,):(ℝ*
× ℝ*)⟶𝒫
ℝ*) |
75 | | rexpssxrxp 10951 |
. . . . . . . 8
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
76 | 75 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (ℝ × ℝ)
⊆ (ℝ* × ℝ*)) |
77 | 74, 76, 15 | fcoss 42639 |
. . . . . 6
⊢ (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫
ℝ*) |
78 | 77 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → ([,) ∘ 𝐹) Fn ℕ) |
79 | | fniunfv 7102 |
. . . . 5
⊢ (([,)
∘ 𝐹) Fn ℕ
→ ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ∪ ran ([,)
∘ 𝐹)) |
80 | 78, 79 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ∪ ran ([,)
∘ 𝐹)) |
81 | 72, 80 | sseqtrd 3957 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ ∪ ran
([,) ∘ 𝐹)) |
82 | | ovnovollem2.z |
. . . 4
⊢ (𝜑 → 𝑍 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
83 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑗𝐹 |
84 | | ressxr 10950 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℝ* |
85 | | xpss2 5600 |
. . . . . . . . . 10
⊢ (ℝ
⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ
× ℝ*)) |
86 | 84, 85 | ax-mp 5 |
. . . . . . . . 9
⊢ (ℝ
× ℝ) ⊆ (ℝ × ℝ*) |
87 | 86 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (ℝ × ℝ)
⊆ (ℝ × ℝ*)) |
88 | 15, 87 | fssd 6602 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ×
ℝ*)) |
89 | 83, 88 | volicofmpt 43428 |
. . . . . 6
⊢ (𝜑 → ((vol ∘ [,)) ∘
𝐹) = (𝑗 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))))) |
90 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝐴 ∈ 𝑉) |
91 | | fvexd 6771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑗)‘𝐴) ∈ V) |
92 | 5, 91, 36 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = ((𝐼‘𝑗)‘𝐴)) |
93 | 92, 13 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ (ℝ ×
ℝ)) |
94 | | 1st2nd2 7843 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(𝐹‘𝑗) = 〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = 〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) |
96 | 95 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ([,)‘(𝐹‘𝑗)) = ([,)‘〈(1st
‘(𝐹‘𝑗)), (2nd
‘(𝐹‘𝑗))〉)) |
97 | | df-ov 7258 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))) = ([,)‘〈(1st
‘(𝐹‘𝑗)), (2nd
‘(𝐹‘𝑗))〉) |
98 | 97 | eqcomi 2747 |
. . . . . . . . . . . . . . 15
⊢
([,)‘〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))) |
99 | 98 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
([,)‘〈(1st ‘(𝐹‘𝑗)), (2nd ‘(𝐹‘𝑗))〉) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
100 | 48, 96, 99 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
101 | 32, 50, 100 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ (𝐼‘𝑗))‘𝐴) = ((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) |
102 | 101 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) = (vol‘((1st
‘(𝐹‘𝑗))[,)(2nd
‘(𝐹‘𝑗))))) |
103 | | xp1st 7836 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘𝑗)) ∈ ℝ) |
104 | 93, 103 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (1st
‘(𝐹‘𝑗)) ∈
ℝ) |
105 | | xp2nd 7837 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑗) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘𝑗)) ∈ ℝ) |
106 | 93, 105 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (2nd
‘(𝐹‘𝑗)) ∈
ℝ) |
107 | | volicore 44009 |
. . . . . . . . . . . 12
⊢
(((1st ‘(𝐹‘𝑗)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑗)) ∈ ℝ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) ∈ ℝ) |
108 | 104, 106,
107 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) ∈ ℝ) |
109 | 102, 108 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) ∈ ℝ) |
110 | 109 | recnd 10934 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘(([,)
∘ (𝐼‘𝑗))‘𝐴)) ∈ ℂ) |
111 | | 2fveq3 6761 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
112 | 111 | prodsn 15600 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
113 | 90, 110, 112 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼‘𝑗))‘𝐴))) |
114 | 113, 102 | eqtr2d 2779 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))) |
115 | 114 | mpteq2dva 5170 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ ℕ ↦
(vol‘((1st ‘(𝐹‘𝑗))[,)(2nd ‘(𝐹‘𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
116 | 89, 115 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → ((vol ∘ [,)) ∘
𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘)))) |
117 | 116 | fveq2d 6760 |
. . . 4
⊢ (𝜑 →
(Σ^‘((vol ∘ [,)) ∘ 𝐹)) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼‘𝑗))‘𝑘))))) |
118 | 82, 117 | eqtr4d 2781 |
. . 3
⊢ (𝜑 → 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝐹))) |
119 | 81, 118 | jca 511 |
. 2
⊢ (𝜑 → (𝐵 ⊆ ∪ ran
([,) ∘ 𝐹) ∧ 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝐹)))) |
120 | | coeq2 5756 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ([,) ∘ 𝑓) = ([,) ∘ 𝐹)) |
121 | 120 | rneqd 5836 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ran ([,) ∘ 𝑓) = ran ([,) ∘ 𝐹)) |
122 | 121 | unieqd 4850 |
. . . . 5
⊢ (𝑓 = 𝐹 → ∪ ran
([,) ∘ 𝑓) = ∪ ran ([,) ∘ 𝐹)) |
123 | 122 | sseq2d 3949 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ↔
𝐵 ⊆ ∪ ran ([,) ∘ 𝐹))) |
124 | | coeq2 5756 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((vol ∘ [,)) ∘ 𝑓) = ((vol ∘ [,)) ∘
𝐹)) |
125 | 124 | fveq2d 6760 |
. . . . 5
⊢ (𝑓 = 𝐹 →
(Σ^‘((vol ∘ [,)) ∘ 𝑓)) =
(Σ^‘((vol ∘ [,)) ∘ 𝐹))) |
126 | 125 | eqeq2d 2749 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)) ↔ 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝐹)))) |
127 | 123, 126 | anbi12d 630 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓))) ↔ (𝐵 ⊆ ∪ ran
([,) ∘ 𝐹) ∧ 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝐹))))) |
128 | 127 | rspcev 3552 |
. 2
⊢ ((𝐹 ∈ ((ℝ ×
ℝ) ↑m ℕ) ∧ (𝐵 ⊆ ∪ ran
([,) ∘ 𝐹) ∧ 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝐹)))) → ∃𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) |
129 | 21, 119, 128 | syl2anc 583 |
1
⊢ (𝜑 → ∃𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)(𝐵 ⊆ ∪ ran
([,) ∘ 𝑓) ∧ 𝑍 =
(Σ^‘((vol ∘ [,)) ∘ 𝑓)))) |