MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxip Structured version   Visualization version   GIF version

Theorem rrxip 25317
Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxip (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxip
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
2 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
31, 2rrxprds 25316 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
43fveq2d 6826 . 2 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))))
5 eqid 2731 . . . 4 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
6 eqid 2731 . . . 4 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
75, 6tcphip 25152 . . 3 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
82fvexi 6836 . . . . 5 𝐵 ∈ V
9 eqid 2731 . . . . . 6 ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)
10 eqid 2731 . . . . . 6 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
119, 10ressip 17249 . . . . 5 (𝐵 ∈ V → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
128, 11ax-mp 5 . . . 4 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
13 eqid 2731 . . . . . 6 (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
14 refld 21556 . . . . . . 7 fld ∈ Field
1514a1i 11 . . . . . 6 (𝐼𝑉 → ℝfld ∈ Field)
16 snex 5372 . . . . . . 7 {((subringAlg ‘ℝfld)‘ℝ)} ∈ V
17 xpexg 7683 . . . . . . 7 ((𝐼𝑉 ∧ {((subringAlg ‘ℝfld)‘ℝ)} ∈ V) → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
1816, 17mpan2 691 . . . . . 6 (𝐼𝑉 → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
19 eqid 2731 . . . . . 6 (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
20 fvex 6835 . . . . . . . . 9 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
2120snnz 4726 . . . . . . . 8 {((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅
22 dmxp 5868 . . . . . . . 8 ({((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2321, 22ax-mp 5 . . . . . . 7 dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼
2423a1i 11 . . . . . 6 (𝐼𝑉 → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2513, 15, 18, 19, 24, 10prdsip 17365 . . . . 5 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))))
2613, 15, 18, 19, 24prdsbas 17361 . . . . . . 7 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
27 eqidd 2732 . . . . . . . . . . 11 (𝑥𝐼 → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
28 rebase 21543 . . . . . . . . . . . . 13 ℝ = (Base‘ℝfld)
2928eqimssi 3990 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
3029a1i 11 . . . . . . . . . . 11 (𝑥𝐼 → ℝ ⊆ (Base‘ℝfld))
3127, 30srabase 21111 . . . . . . . . . 10 (𝑥𝐼 → (Base‘ℝfld) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3228a1i 11 . . . . . . . . . 10 (𝑥𝐼 → ℝ = (Base‘ℝfld))
3320fvconst2 7138 . . . . . . . . . . 11 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥) = ((subringAlg ‘ℝfld)‘ℝ))
3433fveq2d 6826 . . . . . . . . . 10 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3531, 32, 343eqtr4rd 2777 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3635adantl 481 . . . . . . . 8 ((𝐼𝑉𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3736ixpeq2dva 8836 . . . . . . 7 (𝐼𝑉X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = X𝑥𝐼 ℝ)
38 reex 11097 . . . . . . . 8 ℝ ∈ V
39 ixpconstg 8830 . . . . . . . 8 ((𝐼𝑉 ∧ ℝ ∈ V) → X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4038, 39mpan2 691 . . . . . . 7 (𝐼𝑉X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4126, 37, 403eqtrd 2770 . . . . . 6 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (ℝ ↑m 𝐼))
42 remulr 21548 . . . . . . . . . . 11 · = (.r‘ℝfld)
4333, 30sraip 21116 . . . . . . . . . . 11 (𝑥𝐼 → (.r‘ℝfld) = (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
4442, 43eqtr2id 2779 . . . . . . . . . 10 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = · )
4544oveqd 7363 . . . . . . . . 9 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
4645mpteq2ia 5184 . . . . . . . 8 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
4746a1i 11 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
4847oveq2d 7362 . . . . . 6 (𝐼𝑉 → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
4941, 41, 48mpoeq123dv 7421 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5025, 49eqtrd 2766 . . . 4 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5112, 50eqtr3id 2780 . . 3 (𝐼𝑉 → (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
527, 51eqtr3id 2780 . 2 (𝐼𝑉 → (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
534, 52eqtr2d 2767 1 (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cmpt 5170   × cxp 5612  dom cdm 5614  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Xcixp 8821  cr 11005   · cmul 11011  Basecbs 17120  s cress 17141  .rcmulr 17162  ·𝑖cip 17166   Σg cgsu 17344  Xscprds 17349  Fieldcfield 20645  subringAlg csra 21105  fldcrefld 21541  toℂPreHilctcph 25094  ℝ^crrx 25310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-subrng 20461  df-subrg 20485  df-drng 20646  df-field 20647  df-sra 21107  df-rgmod 21108  df-cnfld 21292  df-refld 21542  df-dsmm 21669  df-frlm 21684  df-tng 24499  df-tcph 25096  df-rrx 25312
This theorem is referenced by:  rrxnm  25318
  Copyright terms: Public domain W3C validator