MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxip Structured version   Visualization version   GIF version

Theorem rrxip 25438
Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxip (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxip
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
2 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
31, 2rrxprds 25437 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
43fveq2d 6911 . 2 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))))
5 eqid 2735 . . . 4 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
6 eqid 2735 . . . 4 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
75, 6tcphip 25273 . . 3 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
82fvexi 6921 . . . . 5 𝐵 ∈ V
9 eqid 2735 . . . . . 6 ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)
10 eqid 2735 . . . . . 6 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
119, 10ressip 17391 . . . . 5 (𝐵 ∈ V → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
128, 11ax-mp 5 . . . 4 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
13 eqid 2735 . . . . . 6 (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
14 refld 21655 . . . . . . 7 fld ∈ Field
1514a1i 11 . . . . . 6 (𝐼𝑉 → ℝfld ∈ Field)
16 snex 5442 . . . . . . 7 {((subringAlg ‘ℝfld)‘ℝ)} ∈ V
17 xpexg 7769 . . . . . . 7 ((𝐼𝑉 ∧ {((subringAlg ‘ℝfld)‘ℝ)} ∈ V) → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
1816, 17mpan2 691 . . . . . 6 (𝐼𝑉 → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
19 eqid 2735 . . . . . 6 (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
20 fvex 6920 . . . . . . . . 9 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
2120snnz 4781 . . . . . . . 8 {((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅
22 dmxp 5942 . . . . . . . 8 ({((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2321, 22ax-mp 5 . . . . . . 7 dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼
2423a1i 11 . . . . . 6 (𝐼𝑉 → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2513, 15, 18, 19, 24, 10prdsip 17508 . . . . 5 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))))
2613, 15, 18, 19, 24prdsbas 17504 . . . . . . 7 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
27 eqidd 2736 . . . . . . . . . . 11 (𝑥𝐼 → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
28 rebase 21642 . . . . . . . . . . . . 13 ℝ = (Base‘ℝfld)
2928eqimssi 4056 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
3029a1i 11 . . . . . . . . . . 11 (𝑥𝐼 → ℝ ⊆ (Base‘ℝfld))
3127, 30srabase 21195 . . . . . . . . . 10 (𝑥𝐼 → (Base‘ℝfld) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3228a1i 11 . . . . . . . . . 10 (𝑥𝐼 → ℝ = (Base‘ℝfld))
3320fvconst2 7224 . . . . . . . . . . 11 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥) = ((subringAlg ‘ℝfld)‘ℝ))
3433fveq2d 6911 . . . . . . . . . 10 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3531, 32, 343eqtr4rd 2786 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3635adantl 481 . . . . . . . 8 ((𝐼𝑉𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3736ixpeq2dva 8951 . . . . . . 7 (𝐼𝑉X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = X𝑥𝐼 ℝ)
38 reex 11244 . . . . . . . 8 ℝ ∈ V
39 ixpconstg 8945 . . . . . . . 8 ((𝐼𝑉 ∧ ℝ ∈ V) → X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4038, 39mpan2 691 . . . . . . 7 (𝐼𝑉X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4126, 37, 403eqtrd 2779 . . . . . 6 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (ℝ ↑m 𝐼))
42 remulr 21647 . . . . . . . . . . 11 · = (.r‘ℝfld)
4333, 30sraip 21205 . . . . . . . . . . 11 (𝑥𝐼 → (.r‘ℝfld) = (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
4442, 43eqtr2id 2788 . . . . . . . . . 10 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = · )
4544oveqd 7448 . . . . . . . . 9 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
4645mpteq2ia 5251 . . . . . . . 8 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
4746a1i 11 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
4847oveq2d 7447 . . . . . 6 (𝐼𝑉 → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
4941, 41, 48mpoeq123dv 7508 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5025, 49eqtrd 2775 . . . 4 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5112, 50eqtr3id 2789 . . 3 (𝐼𝑉 → (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
527, 51eqtr3id 2789 . 2 (𝐼𝑉 → (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
534, 52eqtr2d 2776 1 (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339  {csn 4631  cmpt 5231   × cxp 5687  dom cdm 5689  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Xcixp 8936  cr 11152   · cmul 11158  Basecbs 17245  s cress 17274  .rcmulr 17299  ·𝑖cip 17303   Σg cgsu 17487  Xscprds 17492  Fieldcfield 20747  subringAlg csra 21188  fldcrefld 21640  toℂPreHilctcph 25215  ℝ^crrx 25431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-refld 21641  df-dsmm 21770  df-frlm 21785  df-tng 24613  df-tcph 25217  df-rrx 25433
This theorem is referenced by:  rrxnm  25439
  Copyright terms: Public domain W3C validator