MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxip Structured version   Visualization version   GIF version

Theorem rrxip 24682
Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^β€˜πΌ)
rrxbase.b 𝐡 = (Baseβ€˜π»)
Assertion
Ref Expression
rrxip (𝐼 ∈ 𝑉 β†’ (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯))))) = (Β·π‘–β€˜π»))
Distinct variable groups:   𝑓,𝑔,π‘₯,𝐡   𝑓,𝐼,𝑔,π‘₯   𝑓,𝑉,𝑔,π‘₯
Allowed substitution hints:   𝐻(π‘₯,𝑓,𝑔)

Proof of Theorem rrxip
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^β€˜πΌ)
2 rrxbase.b . . . 4 𝐡 = (Baseβ€˜π»)
31, 2rrxprds 24681 . . 3 (𝐼 ∈ 𝑉 β†’ 𝐻 = (toβ„‚PreHilβ€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡)))
43fveq2d 6842 . 2 (𝐼 ∈ 𝑉 β†’ (Β·π‘–β€˜π») = (Β·π‘–β€˜(toβ„‚PreHilβ€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡))))
5 eqid 2738 . . . 4 (toβ„‚PreHilβ€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡)) = (toβ„‚PreHilβ€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡))
6 eqid 2738 . . . 4 (Β·π‘–β€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡)) = (Β·π‘–β€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡))
75, 6tcphip 24517 . . 3 (Β·π‘–β€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡)) = (Β·π‘–β€˜(toβ„‚PreHilβ€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡)))
82fvexi 6852 . . . . 5 𝐡 ∈ V
9 eqid 2738 . . . . . 6 ((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡) = ((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡)
10 eqid 2738 . . . . . 6 (Β·π‘–β€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) = (Β·π‘–β€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})))
119, 10ressip 17162 . . . . 5 (𝐡 ∈ V β†’ (Β·π‘–β€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) = (Β·π‘–β€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡)))
128, 11ax-mp 5 . . . 4 (Β·π‘–β€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) = (Β·π‘–β€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡))
13 eqid 2738 . . . . . 6 (ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) = (ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))
14 refld 20952 . . . . . . 7 ℝfld ∈ Field
1514a1i 11 . . . . . 6 (𝐼 ∈ 𝑉 β†’ ℝfld ∈ Field)
16 snex 5387 . . . . . . 7 {((subringAlg β€˜β„fld)β€˜β„)} ∈ V
17 xpexg 7675 . . . . . . 7 ((𝐼 ∈ 𝑉 ∧ {((subringAlg β€˜β„fld)β€˜β„)} ∈ V) β†’ (𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}) ∈ V)
1816, 17mpan2 690 . . . . . 6 (𝐼 ∈ 𝑉 β†’ (𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}) ∈ V)
19 eqid 2738 . . . . . 6 (Baseβ€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) = (Baseβ€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})))
20 fvex 6851 . . . . . . . . 9 ((subringAlg β€˜β„fld)β€˜β„) ∈ V
2120snnz 4736 . . . . . . . 8 {((subringAlg β€˜β„fld)β€˜β„)} β‰  βˆ…
22 dmxp 5881 . . . . . . . 8 ({((subringAlg β€˜β„fld)β€˜β„)} β‰  βˆ… β†’ dom (𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}) = 𝐼)
2321, 22ax-mp 5 . . . . . . 7 dom (𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}) = 𝐼
2423a1i 11 . . . . . 6 (𝐼 ∈ 𝑉 β†’ dom (𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}) = 𝐼)
2513, 15, 18, 19, 24, 10prdsip 17279 . . . . 5 (𝐼 ∈ 𝑉 β†’ (Β·π‘–β€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) = (𝑓 ∈ (Baseβ€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))), 𝑔 ∈ (Baseβ€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) ↦ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯))(π‘”β€˜π‘₯))))))
2613, 15, 18, 19, 24prdsbas 17275 . . . . . . 7 (𝐼 ∈ 𝑉 β†’ (Baseβ€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) = Xπ‘₯ ∈ 𝐼 (Baseβ€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯)))
27 eqidd 2739 . . . . . . . . . . 11 (π‘₯ ∈ 𝐼 β†’ ((subringAlg β€˜β„fld)β€˜β„) = ((subringAlg β€˜β„fld)β€˜β„))
28 rebase 20939 . . . . . . . . . . . . 13 ℝ = (Baseβ€˜β„fld)
2928eqimssi 4001 . . . . . . . . . . . 12 ℝ βŠ† (Baseβ€˜β„fld)
3029a1i 11 . . . . . . . . . . 11 (π‘₯ ∈ 𝐼 β†’ ℝ βŠ† (Baseβ€˜β„fld))
3127, 30srabase 20569 . . . . . . . . . 10 (π‘₯ ∈ 𝐼 β†’ (Baseβ€˜β„fld) = (Baseβ€˜((subringAlg β€˜β„fld)β€˜β„)))
3228a1i 11 . . . . . . . . . 10 (π‘₯ ∈ 𝐼 β†’ ℝ = (Baseβ€˜β„fld))
3320fvconst2 7148 . . . . . . . . . . 11 (π‘₯ ∈ 𝐼 β†’ ((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯) = ((subringAlg β€˜β„fld)β€˜β„))
3433fveq2d 6842 . . . . . . . . . 10 (π‘₯ ∈ 𝐼 β†’ (Baseβ€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯)) = (Baseβ€˜((subringAlg β€˜β„fld)β€˜β„)))
3531, 32, 343eqtr4rd 2789 . . . . . . . . 9 (π‘₯ ∈ 𝐼 β†’ (Baseβ€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯)) = ℝ)
3635adantl 483 . . . . . . . 8 ((𝐼 ∈ 𝑉 ∧ π‘₯ ∈ 𝐼) β†’ (Baseβ€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯)) = ℝ)
3736ixpeq2dva 8784 . . . . . . 7 (𝐼 ∈ 𝑉 β†’ Xπ‘₯ ∈ 𝐼 (Baseβ€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯)) = Xπ‘₯ ∈ 𝐼 ℝ)
38 reex 11076 . . . . . . . 8 ℝ ∈ V
39 ixpconstg 8778 . . . . . . . 8 ((𝐼 ∈ 𝑉 ∧ ℝ ∈ V) β†’ Xπ‘₯ ∈ 𝐼 ℝ = (ℝ ↑m 𝐼))
4038, 39mpan2 690 . . . . . . 7 (𝐼 ∈ 𝑉 β†’ Xπ‘₯ ∈ 𝐼 ℝ = (ℝ ↑m 𝐼))
4126, 37, 403eqtrd 2782 . . . . . 6 (𝐼 ∈ 𝑉 β†’ (Baseβ€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) = (ℝ ↑m 𝐼))
42 remulr 20944 . . . . . . . . . . 11 Β· = (.rβ€˜β„fld)
4333, 30sraip 20579 . . . . . . . . . . 11 (π‘₯ ∈ 𝐼 β†’ (.rβ€˜β„fld) = (Β·π‘–β€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯)))
4442, 43eqtr2id 2791 . . . . . . . . . 10 (π‘₯ ∈ 𝐼 β†’ (Β·π‘–β€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯)) = Β· )
4544oveqd 7367 . . . . . . . . 9 (π‘₯ ∈ 𝐼 β†’ ((π‘“β€˜π‘₯)(Β·π‘–β€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯))(π‘”β€˜π‘₯)) = ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯)))
4645mpteq2ia 5207 . . . . . . . 8 (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯))(π‘”β€˜π‘₯))) = (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯)))
4746a1i 11 . . . . . . 7 (𝐼 ∈ 𝑉 β†’ (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯))(π‘”β€˜π‘₯))) = (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯))))
4847oveq2d 7366 . . . . . 6 (𝐼 ∈ 𝑉 β†’ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯))(π‘”β€˜π‘₯)))) = (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯)))))
4941, 41, 48mpoeq123dv 7425 . . . . 5 (𝐼 ∈ 𝑉 β†’ (𝑓 ∈ (Baseβ€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))), 𝑔 ∈ (Baseβ€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) ↦ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯)(Β·π‘–β€˜((𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})β€˜π‘₯))(π‘”β€˜π‘₯))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯))))))
5025, 49eqtrd 2778 . . . 4 (𝐼 ∈ 𝑉 β†’ (Β·π‘–β€˜(ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)}))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯))))))
5112, 50eqtr3id 2792 . . 3 (𝐼 ∈ 𝑉 β†’ (Β·π‘–β€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯))))))
527, 51eqtr3id 2792 . 2 (𝐼 ∈ 𝑉 β†’ (Β·π‘–β€˜(toβ„‚PreHilβ€˜((ℝfldXs(𝐼 Γ— {((subringAlg β€˜β„fld)β€˜β„)})) β†Ύs 𝐡))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯))))))
534, 52eqtr2d 2779 1 (𝐼 ∈ 𝑉 β†’ (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Ξ£g (π‘₯ ∈ 𝐼 ↦ ((π‘“β€˜π‘₯) Β· (π‘”β€˜π‘₯))))) = (Β·π‘–β€˜π»))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107   β‰  wne 2942  Vcvv 3444   βŠ† wss 3909  βˆ…c0 4281  {csn 4585   ↦ cmpt 5187   Γ— cxp 5629  dom cdm 5631  β€˜cfv 6492  (class class class)co 7350   ∈ cmpo 7352   ↑m cmap 8699  Xcixp 8769  β„cr 10984   Β· cmul 10990  Basecbs 17019   β†Ύs cress 17048  .rcmulr 17070  Β·π‘–cip 17074   Ξ£g cgsu 17258  Xscprds 17263  Fieldcfield 20115  subringAlg csra 20558  β„fldcrefld 20937  toβ„‚PreHilctcph 24459  β„^crrx 24675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063  ax-addf 11064  ax-mulf 11065
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-tpos 8125  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-er 8582  df-map 8701  df-ixp 8770  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-sup 9312  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-4 12152  df-5 12153  df-6 12154  df-7 12155  df-8 12156  df-9 12157  df-n0 12348  df-z 12434  df-dec 12553  df-uz 12698  df-rp 12846  df-fz 13355  df-seq 13837  df-exp 13898  df-cj 14919  df-re 14920  df-im 14921  df-sqrt 15055  df-abs 15056  df-struct 16955  df-sets 16972  df-slot 16990  df-ndx 17002  df-base 17020  df-ress 17049  df-plusg 17082  df-mulr 17083  df-starv 17084  df-sca 17085  df-vsca 17086  df-ip 17087  df-tset 17088  df-ple 17089  df-ds 17091  df-unif 17092  df-hom 17093  df-cco 17094  df-0g 17259  df-prds 17265  df-pws 17267  df-mgm 18433  df-sgrp 18482  df-mnd 18493  df-grp 18687  df-minusg 18688  df-subg 18860  df-cmn 19499  df-mgp 19832  df-ur 19849  df-ring 19896  df-cring 19897  df-oppr 19978  df-dvdsr 19999  df-unit 20000  df-invr 20030  df-dvr 20041  df-drng 20116  df-field 20117  df-subrg 20149  df-sra 20562  df-rgmod 20563  df-cnfld 20726  df-refld 20938  df-dsmm 21067  df-frlm 21082  df-tng 23868  df-tcph 24461  df-rrx 24677
This theorem is referenced by:  rrxnm  24683
  Copyright terms: Public domain W3C validator