Step | Hyp | Ref
| Expression |
1 | | rrxval.r |
. . . 4
β’ π» = (β^βπΌ) |
2 | | rrxbase.b |
. . . 4
β’ π΅ = (Baseβπ») |
3 | 1, 2 | rrxprds 24681 |
. . 3
β’ (πΌ β π β π» =
(toβPreHilβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅))) |
4 | 3 | fveq2d 6842 |
. 2
β’ (πΌ β π β
(Β·πβπ») =
(Β·πβ(toβPreHilβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅)))) |
5 | | eqid 2738 |
. . . 4
β’
(toβPreHilβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅)) =
(toβPreHilβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅)) |
6 | | eqid 2738 |
. . . 4
β’
(Β·πβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅)) =
(Β·πβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅)) |
7 | 5, 6 | tcphip 24517 |
. . 3
β’
(Β·πβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅)) =
(Β·πβ(toβPreHilβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅))) |
8 | 2 | fvexi 6852 |
. . . . 5
β’ π΅ β V |
9 | | eqid 2738 |
. . . . . 6
β’
((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅) = ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅) |
10 | | eqid 2738 |
. . . . . 6
β’
(Β·πβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) =
(Β·πβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) |
11 | 9, 10 | ressip 17162 |
. . . . 5
β’ (π΅ β V β
(Β·πβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) =
(Β·πβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅))) |
12 | 8, 11 | ax-mp 5 |
. . . 4
β’
(Β·πβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) =
(Β·πβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅)) |
13 | | eqid 2738 |
. . . . . 6
β’
(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) = (βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) |
14 | | refld 20952 |
. . . . . . 7
β’
βfld β Field |
15 | 14 | a1i 11 |
. . . . . 6
β’ (πΌ β π β βfld β
Field) |
16 | | snex 5387 |
. . . . . . 7
β’
{((subringAlg ββfld)ββ)} β
V |
17 | | xpexg 7675 |
. . . . . . 7
β’ ((πΌ β π β§ {((subringAlg
ββfld)ββ)} β V) β (πΌ Γ {((subringAlg
ββfld)ββ)}) β V) |
18 | 16, 17 | mpan2 690 |
. . . . . 6
β’ (πΌ β π β (πΌ Γ {((subringAlg
ββfld)ββ)}) β V) |
19 | | eqid 2738 |
. . . . . 6
β’
(Baseβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) =
(Baseβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) |
20 | | fvex 6851 |
. . . . . . . . 9
β’
((subringAlg ββfld)ββ) β
V |
21 | 20 | snnz 4736 |
. . . . . . . 8
β’
{((subringAlg ββfld)ββ)} β
β
|
22 | | dmxp 5881 |
. . . . . . . 8
β’
({((subringAlg ββfld)ββ)} β
β
β dom (πΌ
Γ {((subringAlg ββfld)ββ)}) = πΌ) |
23 | 21, 22 | ax-mp 5 |
. . . . . . 7
β’ dom
(πΌ Γ {((subringAlg
ββfld)ββ)}) = πΌ |
24 | 23 | a1i 11 |
. . . . . 6
β’ (πΌ β π β dom (πΌ Γ {((subringAlg
ββfld)ββ)}) = πΌ) |
25 | 13, 15, 18, 19, 24, 10 | prdsip 17279 |
. . . . 5
β’ (πΌ β π β
(Β·πβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) = (π β
(Baseβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))), π β
(Baseβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) β¦ (βfld
Ξ£g (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯))(πβπ₯)))))) |
26 | 13, 15, 18, 19, 24 | prdsbas 17275 |
. . . . . . 7
β’ (πΌ β π β
(Baseβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) = Xπ₯ β
πΌ (Baseβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯))) |
27 | | eqidd 2739 |
. . . . . . . . . . 11
β’ (π₯ β πΌ β ((subringAlg
ββfld)ββ) = ((subringAlg
ββfld)ββ)) |
28 | | rebase 20939 |
. . . . . . . . . . . . 13
β’ β =
(Baseββfld) |
29 | 28 | eqimssi 4001 |
. . . . . . . . . . . 12
β’ β
β (Baseββfld) |
30 | 29 | a1i 11 |
. . . . . . . . . . 11
β’ (π₯ β πΌ β β β
(Baseββfld)) |
31 | 27, 30 | srabase 20569 |
. . . . . . . . . 10
β’ (π₯ β πΌ β (Baseββfld) =
(Baseβ((subringAlg
ββfld)ββ))) |
32 | 28 | a1i 11 |
. . . . . . . . . 10
β’ (π₯ β πΌ β β =
(Baseββfld)) |
33 | 20 | fvconst2 7148 |
. . . . . . . . . . 11
β’ (π₯ β πΌ β ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯) = ((subringAlg
ββfld)ββ)) |
34 | 33 | fveq2d 6842 |
. . . . . . . . . 10
β’ (π₯ β πΌ β (Baseβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯)) = (Baseβ((subringAlg
ββfld)ββ))) |
35 | 31, 32, 34 | 3eqtr4rd 2789 |
. . . . . . . . 9
β’ (π₯ β πΌ β (Baseβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯)) = β) |
36 | 35 | adantl 483 |
. . . . . . . 8
β’ ((πΌ β π β§ π₯ β πΌ) β (Baseβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯)) = β) |
37 | 36 | ixpeq2dva 8784 |
. . . . . . 7
β’ (πΌ β π β Xπ₯ β πΌ (Baseβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯)) = Xπ₯ β πΌ β) |
38 | | reex 11076 |
. . . . . . . 8
β’ β
β V |
39 | | ixpconstg 8778 |
. . . . . . . 8
β’ ((πΌ β π β§ β β V) β Xπ₯ β
πΌ β = (β
βm πΌ)) |
40 | 38, 39 | mpan2 690 |
. . . . . . 7
β’ (πΌ β π β Xπ₯ β πΌ β = (β βm πΌ)) |
41 | 26, 37, 40 | 3eqtrd 2782 |
. . . . . 6
β’ (πΌ β π β
(Baseβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) = (β βm
πΌ)) |
42 | | remulr 20944 |
. . . . . . . . . . 11
β’ Β·
= (.rββfld) |
43 | 33, 30 | sraip 20579 |
. . . . . . . . . . 11
β’ (π₯ β πΌ β
(.rββfld) =
(Β·πβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯))) |
44 | 42, 43 | eqtr2id 2791 |
. . . . . . . . . 10
β’ (π₯ β πΌ β
(Β·πβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯)) = Β· ) |
45 | 44 | oveqd 7367 |
. . . . . . . . 9
β’ (π₯ β πΌ β ((πβπ₯)(Β·πβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯))(πβπ₯)) = ((πβπ₯) Β· (πβπ₯))) |
46 | 45 | mpteq2ia 5207 |
. . . . . . . 8
β’ (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯))(πβπ₯))) = (π₯ β πΌ β¦ ((πβπ₯) Β· (πβπ₯))) |
47 | 46 | a1i 11 |
. . . . . . 7
β’ (πΌ β π β (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯))(πβπ₯))) = (π₯ β πΌ β¦ ((πβπ₯) Β· (πβπ₯)))) |
48 | 47 | oveq2d 7366 |
. . . . . 6
β’ (πΌ β π β (βfld
Ξ£g (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯))(πβπ₯)))) = (βfld
Ξ£g (π₯
β πΌ β¦ ((πβπ₯) Β· (πβπ₯))))) |
49 | 41, 41, 48 | mpoeq123dv 7425 |
. . . . 5
β’ (πΌ β π β (π β
(Baseβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))), π β
(Baseβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) β¦ (βfld
Ξ£g (π₯ β πΌ β¦ ((πβπ₯)(Β·πβ((πΌ Γ {((subringAlg
ββfld)ββ)})βπ₯))(πβπ₯))))) = (π β (β βm πΌ), π β (β βm πΌ) β¦ (βfld
Ξ£g (π₯
β πΌ β¦ ((πβπ₯) Β· (πβπ₯)))))) |
50 | 25, 49 | eqtrd 2778 |
. . . 4
β’ (πΌ β π β
(Β·πβ(βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)}))) = (π β (β βm πΌ), π β (β βm πΌ) β¦ (βfld
Ξ£g (π₯ β πΌ β¦ ((πβπ₯) Β· (πβπ₯)))))) |
51 | 12, 50 | eqtr3id 2792 |
. . 3
β’ (πΌ β π β
(Β·πβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅)) = (π β (β βm πΌ), π β (β βm πΌ) β¦ (βfld
Ξ£g (π₯ β πΌ β¦ ((πβπ₯) Β· (πβπ₯)))))) |
52 | 7, 51 | eqtr3id 2792 |
. 2
β’ (πΌ β π β
(Β·πβ(toβPreHilβ((βfldXs(πΌ Γ {((subringAlg
ββfld)ββ)})) βΎs π΅))) = (π β (β βm πΌ), π
β (β βm πΌ)
β¦ (βfld Ξ£g (π₯ β πΌ β¦ ((πβπ₯) Β· (πβπ₯)))))) |
53 | 4, 52 | eqtr2d 2779 |
1
β’ (πΌ β π β (π β (β βm πΌ), π β (β βm πΌ) β¦ (βfld
Ξ£g (π₯ β πΌ β¦ ((πβπ₯) Β· (πβπ₯))))) =
(Β·πβπ»)) |