MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxip Structured version   Visualization version   GIF version

Theorem rrxip 24754
Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxip (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxip
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
2 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
31, 2rrxprds 24753 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
43fveq2d 6846 . 2 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))))
5 eqid 2736 . . . 4 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
6 eqid 2736 . . . 4 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
75, 6tcphip 24589 . . 3 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
82fvexi 6856 . . . . 5 𝐵 ∈ V
9 eqid 2736 . . . . . 6 ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)
10 eqid 2736 . . . . . 6 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
119, 10ressip 17226 . . . . 5 (𝐵 ∈ V → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
128, 11ax-mp 5 . . . 4 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
13 eqid 2736 . . . . . 6 (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
14 refld 21023 . . . . . . 7 fld ∈ Field
1514a1i 11 . . . . . 6 (𝐼𝑉 → ℝfld ∈ Field)
16 snex 5388 . . . . . . 7 {((subringAlg ‘ℝfld)‘ℝ)} ∈ V
17 xpexg 7684 . . . . . . 7 ((𝐼𝑉 ∧ {((subringAlg ‘ℝfld)‘ℝ)} ∈ V) → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
1816, 17mpan2 689 . . . . . 6 (𝐼𝑉 → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
19 eqid 2736 . . . . . 6 (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
20 fvex 6855 . . . . . . . . 9 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
2120snnz 4737 . . . . . . . 8 {((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅
22 dmxp 5884 . . . . . . . 8 ({((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2321, 22ax-mp 5 . . . . . . 7 dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼
2423a1i 11 . . . . . 6 (𝐼𝑉 → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2513, 15, 18, 19, 24, 10prdsip 17343 . . . . 5 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))))
2613, 15, 18, 19, 24prdsbas 17339 . . . . . . 7 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
27 eqidd 2737 . . . . . . . . . . 11 (𝑥𝐼 → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
28 rebase 21010 . . . . . . . . . . . . 13 ℝ = (Base‘ℝfld)
2928eqimssi 4002 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
3029a1i 11 . . . . . . . . . . 11 (𝑥𝐼 → ℝ ⊆ (Base‘ℝfld))
3127, 30srabase 20640 . . . . . . . . . 10 (𝑥𝐼 → (Base‘ℝfld) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3228a1i 11 . . . . . . . . . 10 (𝑥𝐼 → ℝ = (Base‘ℝfld))
3320fvconst2 7153 . . . . . . . . . . 11 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥) = ((subringAlg ‘ℝfld)‘ℝ))
3433fveq2d 6846 . . . . . . . . . 10 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3531, 32, 343eqtr4rd 2787 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3635adantl 482 . . . . . . . 8 ((𝐼𝑉𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3736ixpeq2dva 8850 . . . . . . 7 (𝐼𝑉X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = X𝑥𝐼 ℝ)
38 reex 11142 . . . . . . . 8 ℝ ∈ V
39 ixpconstg 8844 . . . . . . . 8 ((𝐼𝑉 ∧ ℝ ∈ V) → X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4038, 39mpan2 689 . . . . . . 7 (𝐼𝑉X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4126, 37, 403eqtrd 2780 . . . . . 6 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (ℝ ↑m 𝐼))
42 remulr 21015 . . . . . . . . . . 11 · = (.r‘ℝfld)
4333, 30sraip 20650 . . . . . . . . . . 11 (𝑥𝐼 → (.r‘ℝfld) = (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
4442, 43eqtr2id 2789 . . . . . . . . . 10 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = · )
4544oveqd 7374 . . . . . . . . 9 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
4645mpteq2ia 5208 . . . . . . . 8 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
4746a1i 11 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
4847oveq2d 7373 . . . . . 6 (𝐼𝑉 → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
4941, 41, 48mpoeq123dv 7432 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5025, 49eqtrd 2776 . . . 4 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5112, 50eqtr3id 2790 . . 3 (𝐼𝑉 → (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
527, 51eqtr3id 2790 . 2 (𝐼𝑉 → (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
534, 52eqtr2d 2777 1 (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  wss 3910  c0 4282  {csn 4586  cmpt 5188   × cxp 5631  dom cdm 5633  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  Xcixp 8835  cr 11050   · cmul 11056  Basecbs 17083  s cress 17112  .rcmulr 17134  ·𝑖cip 17138   Σg cgsu 17322  Xscprds 17327  Fieldcfield 20186  subringAlg csra 20629  fldcrefld 21008  toℂPreHilctcph 24531  ℝ^crrx 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-subg 18925  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-field 20188  df-subrg 20220  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-refld 21009  df-dsmm 21138  df-frlm 21153  df-tng 23940  df-tcph 24533  df-rrx 24749
This theorem is referenced by:  rrxnm  24755
  Copyright terms: Public domain W3C validator