MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxip Structured version   Visualization version   GIF version

Theorem rrxip 24876
Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxip (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxip
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
2 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
31, 2rrxprds 24875 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
43fveq2d 6885 . 2 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))))
5 eqid 2733 . . . 4 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
6 eqid 2733 . . . 4 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
75, 6tcphip 24711 . . 3 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
82fvexi 6895 . . . . 5 𝐵 ∈ V
9 eqid 2733 . . . . . 6 ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)
10 eqid 2733 . . . . . 6 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
119, 10ressip 17277 . . . . 5 (𝐵 ∈ V → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
128, 11ax-mp 5 . . . 4 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
13 eqid 2733 . . . . . 6 (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
14 refld 21145 . . . . . . 7 fld ∈ Field
1514a1i 11 . . . . . 6 (𝐼𝑉 → ℝfld ∈ Field)
16 snex 5427 . . . . . . 7 {((subringAlg ‘ℝfld)‘ℝ)} ∈ V
17 xpexg 7724 . . . . . . 7 ((𝐼𝑉 ∧ {((subringAlg ‘ℝfld)‘ℝ)} ∈ V) → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
1816, 17mpan2 690 . . . . . 6 (𝐼𝑉 → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
19 eqid 2733 . . . . . 6 (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
20 fvex 6894 . . . . . . . . 9 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
2120snnz 4776 . . . . . . . 8 {((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅
22 dmxp 5923 . . . . . . . 8 ({((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2321, 22ax-mp 5 . . . . . . 7 dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼
2423a1i 11 . . . . . 6 (𝐼𝑉 → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2513, 15, 18, 19, 24, 10prdsip 17394 . . . . 5 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))))
2613, 15, 18, 19, 24prdsbas 17390 . . . . . . 7 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
27 eqidd 2734 . . . . . . . . . . 11 (𝑥𝐼 → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
28 rebase 21132 . . . . . . . . . . . . 13 ℝ = (Base‘ℝfld)
2928eqimssi 4040 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
3029a1i 11 . . . . . . . . . . 11 (𝑥𝐼 → ℝ ⊆ (Base‘ℝfld))
3127, 30srabase 20769 . . . . . . . . . 10 (𝑥𝐼 → (Base‘ℝfld) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3228a1i 11 . . . . . . . . . 10 (𝑥𝐼 → ℝ = (Base‘ℝfld))
3320fvconst2 7192 . . . . . . . . . . 11 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥) = ((subringAlg ‘ℝfld)‘ℝ))
3433fveq2d 6885 . . . . . . . . . 10 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3531, 32, 343eqtr4rd 2784 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3635adantl 483 . . . . . . . 8 ((𝐼𝑉𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3736ixpeq2dva 8894 . . . . . . 7 (𝐼𝑉X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = X𝑥𝐼 ℝ)
38 reex 11188 . . . . . . . 8 ℝ ∈ V
39 ixpconstg 8888 . . . . . . . 8 ((𝐼𝑉 ∧ ℝ ∈ V) → X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4038, 39mpan2 690 . . . . . . 7 (𝐼𝑉X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4126, 37, 403eqtrd 2777 . . . . . 6 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (ℝ ↑m 𝐼))
42 remulr 21137 . . . . . . . . . . 11 · = (.r‘ℝfld)
4333, 30sraip 20779 . . . . . . . . . . 11 (𝑥𝐼 → (.r‘ℝfld) = (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
4442, 43eqtr2id 2786 . . . . . . . . . 10 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = · )
4544oveqd 7413 . . . . . . . . 9 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
4645mpteq2ia 5247 . . . . . . . 8 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
4746a1i 11 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
4847oveq2d 7412 . . . . . 6 (𝐼𝑉 → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
4941, 41, 48mpoeq123dv 7471 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5025, 49eqtrd 2773 . . . 4 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5112, 50eqtr3id 2787 . . 3 (𝐼𝑉 → (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
527, 51eqtr3id 2787 . 2 (𝐼𝑉 → (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
534, 52eqtr2d 2774 1 (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  wss 3946  c0 4320  {csn 4624  cmpt 5227   × cxp 5670  dom cdm 5672  cfv 6535  (class class class)co 7396  cmpo 7398  m cmap 8808  Xcixp 8879  cr 11096   · cmul 11102  Basecbs 17131  s cress 17160  .rcmulr 17185  ·𝑖cip 17189   Σg cgsu 17373  Xscprds 17378  Fieldcfield 20294  subringAlg csra 20758  fldcrefld 21130  toℂPreHilctcph 24653  ℝ^crrx 24869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-tpos 8198  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-map 8810  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-sup 9424  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-z 12546  df-dec 12665  df-uz 12810  df-rp 12962  df-fz 13472  df-seq 13954  df-exp 14015  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-mulr 17198  df-starv 17199  df-sca 17200  df-vsca 17201  df-ip 17202  df-tset 17203  df-ple 17204  df-ds 17206  df-unif 17207  df-hom 17208  df-cco 17209  df-0g 17374  df-prds 17380  df-pws 17382  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-grp 18809  df-minusg 18810  df-subg 18988  df-cmn 19634  df-mgp 19971  df-ur 19988  df-ring 20040  df-cring 20041  df-oppr 20128  df-dvdsr 20149  df-unit 20150  df-invr 20180  df-dvr 20193  df-drng 20295  df-field 20296  df-subrg 20338  df-sra 20762  df-rgmod 20763  df-cnfld 20919  df-refld 21131  df-dsmm 21260  df-frlm 21275  df-tng 24062  df-tcph 24655  df-rrx 24871
This theorem is referenced by:  rrxnm  24877
  Copyright terms: Public domain W3C validator