MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxip Structured version   Visualization version   GIF version

Theorem rrxip 24287
Description: The inner product of the generalized real Euclidean spaces. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
rrxbase.b 𝐵 = (Base‘𝐻)
Assertion
Ref Expression
rrxip (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝑓,𝐼,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)

Proof of Theorem rrxip
StepHypRef Expression
1 rrxval.r . . . 4 𝐻 = (ℝ^‘𝐼)
2 rrxbase.b . . . 4 𝐵 = (Base‘𝐻)
31, 2rrxprds 24286 . . 3 (𝐼𝑉𝐻 = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
43fveq2d 6721 . 2 (𝐼𝑉 → (·𝑖𝐻) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))))
5 eqid 2737 . . . 4 (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
6 eqid 2737 . . . 4 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
75, 6tcphip 24122 . . 3 (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
82fvexi 6731 . . . . 5 𝐵 ∈ V
9 eqid 2737 . . . . . 6 ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵) = ((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)
10 eqid 2737 . . . . . 6 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
119, 10ressip 16878 . . . . 5 (𝐵 ∈ V → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)))
128, 11ax-mp 5 . . . 4 (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))
13 eqid 2737 . . . . . 6 (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) = (ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))
14 refld 20581 . . . . . . 7 fld ∈ Field
1514a1i 11 . . . . . 6 (𝐼𝑉 → ℝfld ∈ Field)
16 snex 5324 . . . . . . 7 {((subringAlg ‘ℝfld)‘ℝ)} ∈ V
17 xpexg 7535 . . . . . . 7 ((𝐼𝑉 ∧ {((subringAlg ‘ℝfld)‘ℝ)} ∈ V) → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
1816, 17mpan2 691 . . . . . 6 (𝐼𝑉 → (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) ∈ V)
19 eqid 2737 . . . . . 6 (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})))
20 fvex 6730 . . . . . . . . 9 ((subringAlg ‘ℝfld)‘ℝ) ∈ V
2120snnz 4692 . . . . . . . 8 {((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅
22 dmxp 5798 . . . . . . . 8 ({((subringAlg ‘ℝfld)‘ℝ)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2321, 22ax-mp 5 . . . . . . 7 dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼
2423a1i 11 . . . . . 6 (𝐼𝑉 → dom (𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}) = 𝐼)
2513, 15, 18, 19, 24, 10prdsip 16966 . . . . 5 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))))
2613, 15, 18, 19, 24prdsbas 16962 . . . . . . 7 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
27 eqidd 2738 . . . . . . . . . . 11 (𝑥𝐼 → ((subringAlg ‘ℝfld)‘ℝ) = ((subringAlg ‘ℝfld)‘ℝ))
28 rebase 20568 . . . . . . . . . . . . 13 ℝ = (Base‘ℝfld)
2928eqimssi 3959 . . . . . . . . . . . 12 ℝ ⊆ (Base‘ℝfld)
3029a1i 11 . . . . . . . . . . 11 (𝑥𝐼 → ℝ ⊆ (Base‘ℝfld))
3127, 30srabase 20215 . . . . . . . . . 10 (𝑥𝐼 → (Base‘ℝfld) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3228a1i 11 . . . . . . . . . 10 (𝑥𝐼 → ℝ = (Base‘ℝfld))
3320fvconst2 7019 . . . . . . . . . . 11 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥) = ((subringAlg ‘ℝfld)‘ℝ))
3433fveq2d 6721 . . . . . . . . . 10 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = (Base‘((subringAlg ‘ℝfld)‘ℝ)))
3531, 32, 343eqtr4rd 2788 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3635adantl 485 . . . . . . . 8 ((𝐼𝑉𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = ℝ)
3736ixpeq2dva 8593 . . . . . . 7 (𝐼𝑉X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = X𝑥𝐼 ℝ)
38 reex 10820 . . . . . . . 8 ℝ ∈ V
39 ixpconstg 8587 . . . . . . . 8 ((𝐼𝑉 ∧ ℝ ∈ V) → X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4038, 39mpan2 691 . . . . . . 7 (𝐼𝑉X𝑥𝐼 ℝ = (ℝ ↑m 𝐼))
4126, 37, 403eqtrd 2781 . . . . . 6 (𝐼𝑉 → (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (ℝ ↑m 𝐼))
42 remulr 20573 . . . . . . . . . . 11 · = (.r‘ℝfld)
4333, 30sraip 20220 . . . . . . . . . . 11 (𝑥𝐼 → (.r‘ℝfld) = (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)))
4442, 43eqtr2id 2791 . . . . . . . . . 10 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥)) = · )
4544oveqd 7230 . . . . . . . . 9 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
4645mpteq2ia 5146 . . . . . . . 8 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
4746a1i 11 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
4847oveq2d 7229 . . . . . 6 (𝐼𝑉 → (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥)))) = (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
4941, 41, 48mpoeq123dv 7286 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))), 𝑔 ∈ (Base‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5025, 49eqtrd 2777 . . . 4 (𝐼𝑉 → (·𝑖‘(ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)}))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
5112, 50eqtr3id 2792 . . 3 (𝐼𝑉 → (·𝑖‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
527, 51eqtr3id 2792 . 2 (𝐼𝑉 → (·𝑖‘(toℂPreHil‘((ℝfldXs(𝐼 × {((subringAlg ‘ℝfld)‘ℝ)})) ↾s 𝐵))) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
534, 52eqtr2d 2778 1 (𝐼𝑉 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (ℝfld Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  wss 3866  c0 4237  {csn 4541  cmpt 5135   × cxp 5549  dom cdm 5551  cfv 6380  (class class class)co 7213  cmpo 7215  m cmap 8508  Xcixp 8578  cr 10728   · cmul 10734  Basecbs 16760  s cress 16784  .rcmulr 16803  ·𝑖cip 16807   Σg cgsu 16945  Xscprds 16950  Fieldcfield 19768  subringAlg csra 20205  fldcrefld 20566  toℂPreHilctcph 24064  ℝ^crrx 24280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-rp 12587  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-0g 16946  df-prds 16952  df-pws 16954  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-subg 18540  df-cmn 19172  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-field 19770  df-subrg 19798  df-sra 20209  df-rgmod 20210  df-cnfld 20364  df-refld 20567  df-dsmm 20694  df-frlm 20709  df-tng 23482  df-tcph 24066  df-rrx 24282
This theorem is referenced by:  rrxnm  24288
  Copyright terms: Public domain W3C validator