Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoicoto2 | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoicoto2.i | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
hoicoto2.a | ⊢ 𝐴 = (𝑘 ∈ 𝑋 ↦ (1st ‘(𝐼‘𝑘))) |
hoicoto2.b | ⊢ 𝐵 = (𝑘 ∈ 𝑋 ↦ (2nd ‘(𝐼‘𝑘))) |
Ref | Expression |
---|---|
hoicoto2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoicoto2.i | . . . . 5 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐼:𝑋⟶(ℝ × ℝ)) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
4 | 2, 3 | fvovco 42621 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) |
5 | 1 | ffvelrnda 6943 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) ∈ (ℝ × ℝ)) |
6 | xp1st 7836 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) |
8 | 7 | elexd 3442 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ V) |
9 | hoicoto2.a | . . . . . . 7 ⊢ 𝐴 = (𝑘 ∈ 𝑋 ↦ (1st ‘(𝐼‘𝑘))) | |
10 | 9 | fvmpt2 6868 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑋 ∧ (1st ‘(𝐼‘𝑘)) ∈ V) → (𝐴‘𝑘) = (1st ‘(𝐼‘𝑘))) |
11 | 3, 8, 10 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) = (1st ‘(𝐼‘𝑘))) |
12 | 11 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) = (𝐴‘𝑘)) |
13 | xp2nd 7837 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) | |
14 | 5, 13 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) |
15 | 14 | elexd 3442 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ V) |
16 | hoicoto2.b | . . . . . . 7 ⊢ 𝐵 = (𝑘 ∈ 𝑋 ↦ (2nd ‘(𝐼‘𝑘))) | |
17 | 16 | fvmpt2 6868 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑋 ∧ (2nd ‘(𝐼‘𝑘)) ∈ V) → (𝐵‘𝑘) = (2nd ‘(𝐼‘𝑘))) |
18 | 3, 15, 17 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) = (2nd ‘(𝐼‘𝑘))) |
19 | 18 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) = (𝐵‘𝑘)) |
20 | 12, 19 | oveq12d 7273 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
21 | 4, 20 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
22 | 21 | ixpeq2dva 8658 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Xcixp 8643 ℝcr 10801 [,)cico 13010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-1st 7804 df-2nd 7805 df-ixp 8644 |
This theorem is referenced by: opnvonmbllem2 44061 |
Copyright terms: Public domain | W3C validator |