Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicoto2 Structured version   Visualization version   GIF version

Theorem hoicoto2 45619
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoicoto2.i (𝜑𝐼:𝑋⟶(ℝ × ℝ))
hoicoto2.a 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
hoicoto2.b 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
Assertion
Ref Expression
hoicoto2 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable groups:   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoicoto2
StepHypRef Expression
1 hoicoto2.i . . . . 5 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
21adantr 479 . . . 4 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
3 simpr 483 . . . 4 ((𝜑𝑘𝑋) → 𝑘𝑋)
42, 3fvovco 44190 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
51ffvelcdmda 7085 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
6 xp1st 8009 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
75, 6syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
87elexd 3493 . . . . . 6 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ V)
9 hoicoto2.a . . . . . . 7 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
109fvmpt2 7008 . . . . . 6 ((𝑘𝑋 ∧ (1st ‘(𝐼𝑘)) ∈ V) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
113, 8, 10syl2anc 582 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
1211eqcomd 2736 . . . 4 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) = (𝐴𝑘))
13 xp2nd 8010 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
145, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1514elexd 3493 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ V)
16 hoicoto2.b . . . . . . 7 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
1716fvmpt2 7008 . . . . . 6 ((𝑘𝑋 ∧ (2nd ‘(𝐼𝑘)) ∈ V) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
183, 15, 17syl2anc 582 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
1918eqcomd 2736 . . . 4 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) = (𝐵𝑘))
2012, 19oveq12d 7429 . . 3 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
214, 20eqtrd 2770 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
2221ixpeq2dva 8908 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  cmpt 5230   × cxp 5673  ccom 5679  wf 6538  cfv 6542  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  Xcixp 8893  cr 11111  [,)cico 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-1st 7977  df-2nd 7978  df-ixp 8894
This theorem is referenced by:  opnvonmbllem2  45647
  Copyright terms: Public domain W3C validator