![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoicoto2 | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoicoto2.i | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
hoicoto2.a | ⊢ 𝐴 = (𝑘 ∈ 𝑋 ↦ (1st ‘(𝐼‘𝑘))) |
hoicoto2.b | ⊢ 𝐵 = (𝑘 ∈ 𝑋 ↦ (2nd ‘(𝐼‘𝑘))) |
Ref | Expression |
---|---|
hoicoto2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoicoto2.i | . . . . 5 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐼:𝑋⟶(ℝ × ℝ)) |
3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
4 | 2, 3 | fvovco 45102 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) |
5 | 1 | ffvelcdmda 7120 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) ∈ (ℝ × ℝ)) |
6 | xp1st 8064 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) |
8 | 7 | elexd 3512 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ V) |
9 | hoicoto2.a | . . . . . . 7 ⊢ 𝐴 = (𝑘 ∈ 𝑋 ↦ (1st ‘(𝐼‘𝑘))) | |
10 | 9 | fvmpt2 7042 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑋 ∧ (1st ‘(𝐼‘𝑘)) ∈ V) → (𝐴‘𝑘) = (1st ‘(𝐼‘𝑘))) |
11 | 3, 8, 10 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) = (1st ‘(𝐼‘𝑘))) |
12 | 11 | eqcomd 2746 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) = (𝐴‘𝑘)) |
13 | xp2nd 8065 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) | |
14 | 5, 13 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) |
15 | 14 | elexd 3512 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ V) |
16 | hoicoto2.b | . . . . . . 7 ⊢ 𝐵 = (𝑘 ∈ 𝑋 ↦ (2nd ‘(𝐼‘𝑘))) | |
17 | 16 | fvmpt2 7042 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑋 ∧ (2nd ‘(𝐼‘𝑘)) ∈ V) → (𝐵‘𝑘) = (2nd ‘(𝐼‘𝑘))) |
18 | 3, 15, 17 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) = (2nd ‘(𝐼‘𝑘))) |
19 | 18 | eqcomd 2746 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) = (𝐵‘𝑘)) |
20 | 12, 19 | oveq12d 7468 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
21 | 4, 20 | eqtrd 2780 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
22 | 21 | ixpeq2dva 8972 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 × cxp 5698 ∘ ccom 5704 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 1st c1st 8030 2nd c2nd 8031 Xcixp 8957 ℝcr 11185 [,)cico 13411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-ov 7453 df-1st 8032 df-2nd 8033 df-ixp 8958 |
This theorem is referenced by: opnvonmbllem2 46556 |
Copyright terms: Public domain | W3C validator |