| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoicoto2 | Structured version Visualization version GIF version | ||
| Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| hoicoto2.i | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
| hoicoto2.a | ⊢ 𝐴 = (𝑘 ∈ 𝑋 ↦ (1st ‘(𝐼‘𝑘))) |
| hoicoto2.b | ⊢ 𝐵 = (𝑘 ∈ 𝑋 ↦ (2nd ‘(𝐼‘𝑘))) |
| Ref | Expression |
|---|---|
| hoicoto2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoicoto2.i | . . . . 5 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐼:𝑋⟶(ℝ × ℝ)) |
| 3 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
| 4 | 2, 3 | fvovco 45289 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) |
| 5 | 1 | ffvelcdmda 7017 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) ∈ (ℝ × ℝ)) |
| 6 | xp1st 7953 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) | |
| 7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) |
| 8 | 7 | elexd 3460 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ V) |
| 9 | hoicoto2.a | . . . . . . 7 ⊢ 𝐴 = (𝑘 ∈ 𝑋 ↦ (1st ‘(𝐼‘𝑘))) | |
| 10 | 9 | fvmpt2 6940 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑋 ∧ (1st ‘(𝐼‘𝑘)) ∈ V) → (𝐴‘𝑘) = (1st ‘(𝐼‘𝑘))) |
| 11 | 3, 8, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) = (1st ‘(𝐼‘𝑘))) |
| 12 | 11 | eqcomd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) = (𝐴‘𝑘)) |
| 13 | xp2nd 7954 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) | |
| 14 | 5, 13 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) |
| 15 | 14 | elexd 3460 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ V) |
| 16 | hoicoto2.b | . . . . . . 7 ⊢ 𝐵 = (𝑘 ∈ 𝑋 ↦ (2nd ‘(𝐼‘𝑘))) | |
| 17 | 16 | fvmpt2 6940 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑋 ∧ (2nd ‘(𝐼‘𝑘)) ∈ V) → (𝐵‘𝑘) = (2nd ‘(𝐼‘𝑘))) |
| 18 | 3, 15, 17 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) = (2nd ‘(𝐼‘𝑘))) |
| 19 | 18 | eqcomd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) = (𝐵‘𝑘)) |
| 20 | 12, 19 | oveq12d 7364 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 21 | 4, 20 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| 22 | 21 | ixpeq2dva 8836 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 × cxp 5612 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Xcixp 8821 ℝcr 11005 [,)cico 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-1st 7921 df-2nd 7922 df-ixp 8822 |
| This theorem is referenced by: opnvonmbllem2 46730 |
| Copyright terms: Public domain | W3C validator |