Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoicoto2 | Structured version Visualization version GIF version |
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoicoto2.i | ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) |
hoicoto2.a | ⊢ 𝐴 = (𝑘 ∈ 𝑋 ↦ (1st ‘(𝐼‘𝑘))) |
hoicoto2.b | ⊢ 𝐵 = (𝑘 ∈ 𝑋 ↦ (2nd ‘(𝐼‘𝑘))) |
Ref | Expression |
---|---|
hoicoto2 | ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoicoto2.i | . . . . 5 ⊢ (𝜑 → 𝐼:𝑋⟶(ℝ × ℝ)) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐼:𝑋⟶(ℝ × ℝ)) |
3 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) | |
4 | 2, 3 | fvovco 42702 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘)))) |
5 | 1 | ffvelrnda 6958 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐼‘𝑘) ∈ (ℝ × ℝ)) |
6 | xp1st 7856 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ ℝ) |
8 | 7 | elexd 3451 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) ∈ V) |
9 | hoicoto2.a | . . . . . . 7 ⊢ 𝐴 = (𝑘 ∈ 𝑋 ↦ (1st ‘(𝐼‘𝑘))) | |
10 | 9 | fvmpt2 6883 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑋 ∧ (1st ‘(𝐼‘𝑘)) ∈ V) → (𝐴‘𝑘) = (1st ‘(𝐼‘𝑘))) |
11 | 3, 8, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) = (1st ‘(𝐼‘𝑘))) |
12 | 11 | eqcomd 2746 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘(𝐼‘𝑘)) = (𝐴‘𝑘)) |
13 | xp2nd 7857 | . . . . . . . 8 ⊢ ((𝐼‘𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) | |
14 | 5, 13 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ ℝ) |
15 | 14 | elexd 3451 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) ∈ V) |
16 | hoicoto2.b | . . . . . . 7 ⊢ 𝐵 = (𝑘 ∈ 𝑋 ↦ (2nd ‘(𝐼‘𝑘))) | |
17 | 16 | fvmpt2 6883 | . . . . . 6 ⊢ ((𝑘 ∈ 𝑋 ∧ (2nd ‘(𝐼‘𝑘)) ∈ V) → (𝐵‘𝑘) = (2nd ‘(𝐼‘𝑘))) |
18 | 3, 15, 17 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) = (2nd ‘(𝐼‘𝑘))) |
19 | 18 | eqcomd 2746 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘(𝐼‘𝑘)) = (𝐵‘𝑘)) |
20 | 12, 19 | oveq12d 7289 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘(𝐼‘𝑘))[,)(2nd ‘(𝐼‘𝑘))) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
21 | 4, 20 | eqtrd 2780 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
22 | 21 | ixpeq2dva 8683 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ↦ cmpt 5162 × cxp 5588 ∘ ccom 5594 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 1st c1st 7822 2nd c2nd 7823 Xcixp 8668 ℝcr 10871 [,)cico 13080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-1st 7824 df-2nd 7825 df-ixp 8669 |
This theorem is referenced by: opnvonmbllem2 44142 |
Copyright terms: Public domain | W3C validator |