Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicoto2 Structured version   Visualization version   GIF version

Theorem hoicoto2 46702
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoicoto2.i (𝜑𝐼:𝑋⟶(ℝ × ℝ))
hoicoto2.a 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
hoicoto2.b 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
Assertion
Ref Expression
hoicoto2 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable groups:   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoicoto2
StepHypRef Expression
1 hoicoto2.i . . . . 5 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
21adantr 480 . . . 4 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
3 simpr 484 . . . 4 ((𝜑𝑘𝑋) → 𝑘𝑋)
42, 3fvovco 45289 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
51ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
6 xp1st 7953 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
75, 6syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
87elexd 3460 . . . . . 6 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ V)
9 hoicoto2.a . . . . . . 7 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
109fvmpt2 6940 . . . . . 6 ((𝑘𝑋 ∧ (1st ‘(𝐼𝑘)) ∈ V) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
113, 8, 10syl2anc 584 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
1211eqcomd 2737 . . . 4 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) = (𝐴𝑘))
13 xp2nd 7954 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
145, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1514elexd 3460 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ V)
16 hoicoto2.b . . . . . . 7 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
1716fvmpt2 6940 . . . . . 6 ((𝑘𝑋 ∧ (2nd ‘(𝐼𝑘)) ∈ V) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
183, 15, 17syl2anc 584 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
1918eqcomd 2737 . . . 4 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) = (𝐵𝑘))
2012, 19oveq12d 7364 . . 3 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
214, 20eqtrd 2766 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
2221ixpeq2dva 8836 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5170   × cxp 5612  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Xcixp 8821  cr 11005  [,)cico 13247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-1st 7921  df-2nd 7922  df-ixp 8822
This theorem is referenced by:  opnvonmbllem2  46730
  Copyright terms: Public domain W3C validator