Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoicoto2 Structured version   Visualization version   GIF version

Theorem hoicoto2 46577
Description: The half-open interval expressed using a composition of a function into (ℝ × ℝ) and using two distinct real-valued functions for the borders. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoicoto2.i (𝜑𝐼:𝑋⟶(ℝ × ℝ))
hoicoto2.a 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
hoicoto2.b 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
Assertion
Ref Expression
hoicoto2 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Distinct variable groups:   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem hoicoto2
StepHypRef Expression
1 hoicoto2.i . . . . 5 (𝜑𝐼:𝑋⟶(ℝ × ℝ))
21adantr 480 . . . 4 ((𝜑𝑘𝑋) → 𝐼:𝑋⟶(ℝ × ℝ))
3 simpr 484 . . . 4 ((𝜑𝑘𝑋) → 𝑘𝑋)
42, 3fvovco 45155 . . 3 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))))
51ffvelcdmda 7084 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐼𝑘) ∈ (ℝ × ℝ))
6 xp1st 8028 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐼𝑘)) ∈ ℝ)
75, 6syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ ℝ)
87elexd 3487 . . . . . 6 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) ∈ V)
9 hoicoto2.a . . . . . . 7 𝐴 = (𝑘𝑋 ↦ (1st ‘(𝐼𝑘)))
109fvmpt2 7007 . . . . . 6 ((𝑘𝑋 ∧ (1st ‘(𝐼𝑘)) ∈ V) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
113, 8, 10syl2anc 584 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) = (1st ‘(𝐼𝑘)))
1211eqcomd 2740 . . . 4 ((𝜑𝑘𝑋) → (1st ‘(𝐼𝑘)) = (𝐴𝑘))
13 xp2nd 8029 . . . . . . . 8 ((𝐼𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
145, 13syl 17 . . . . . . 7 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ ℝ)
1514elexd 3487 . . . . . 6 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) ∈ V)
16 hoicoto2.b . . . . . . 7 𝐵 = (𝑘𝑋 ↦ (2nd ‘(𝐼𝑘)))
1716fvmpt2 7007 . . . . . 6 ((𝑘𝑋 ∧ (2nd ‘(𝐼𝑘)) ∈ V) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
183, 15, 17syl2anc 584 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) = (2nd ‘(𝐼𝑘)))
1918eqcomd 2740 . . . 4 ((𝜑𝑘𝑋) → (2nd ‘(𝐼𝑘)) = (𝐵𝑘))
2012, 19oveq12d 7431 . . 3 ((𝜑𝑘𝑋) → ((1st ‘(𝐼𝑘))[,)(2nd ‘(𝐼𝑘))) = ((𝐴𝑘)[,)(𝐵𝑘)))
214, 20eqtrd 2769 . 2 ((𝜑𝑘𝑋) → (([,) ∘ 𝐼)‘𝑘) = ((𝐴𝑘)[,)(𝐵𝑘)))
2221ixpeq2dva 8934 1 (𝜑X𝑘𝑋 (([,) ∘ 𝐼)‘𝑘) = X𝑘𝑋 ((𝐴𝑘)[,)(𝐵𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cmpt 5205   × cxp 5663  ccom 5669  wf 6537  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  Xcixp 8919  cr 11136  [,)cico 13371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-1st 7996  df-2nd 7997  df-ixp 8920
This theorem is referenced by:  opnvonmbllem2  46605
  Copyright terms: Public domain W3C validator