MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmgp Structured version   Visualization version   GIF version

Theorem prdsmgp 19095
Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsmgp.y 𝑌 = (𝑆Xs𝑅)
prdsmgp.m 𝑀 = (mulGrp‘𝑌)
prdsmgp.z 𝑍 = (𝑆Xs(mulGrp ∘ 𝑅))
prdsmgp.i (𝜑𝐼𝑉)
prdsmgp.s (𝜑𝑆𝑊)
prdsmgp.r (𝜑𝑅 Fn 𝐼)
Assertion
Ref Expression
prdsmgp (𝜑 → ((Base‘𝑀) = (Base‘𝑍) ∧ (+g𝑀) = (+g𝑍)))

Proof of Theorem prdsmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . . . 6 (mulGrp‘(𝑅𝑥)) = (mulGrp‘(𝑅𝑥))
2 eqid 2771 . . . . . 6 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
31, 2mgpbas 18980 . . . . 5 (Base‘(𝑅𝑥)) = (Base‘(mulGrp‘(𝑅𝑥)))
4 prdsmgp.r . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
5 fvco2 6584 . . . . . . . 8 ((𝑅 Fn 𝐼𝑥𝐼) → ((mulGrp ∘ 𝑅)‘𝑥) = (mulGrp‘(𝑅𝑥)))
64, 5sylan 572 . . . . . . 7 ((𝜑𝑥𝐼) → ((mulGrp ∘ 𝑅)‘𝑥) = (mulGrp‘(𝑅𝑥)))
76eqcomd 2777 . . . . . 6 ((𝜑𝑥𝐼) → (mulGrp‘(𝑅𝑥)) = ((mulGrp ∘ 𝑅)‘𝑥))
87fveq2d 6500 . . . . 5 ((𝜑𝑥𝐼) → (Base‘(mulGrp‘(𝑅𝑥))) = (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
93, 8syl5eq 2819 . . . 4 ((𝜑𝑥𝐼) → (Base‘(𝑅𝑥)) = (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
109ixpeq2dva 8272 . . 3 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) = X𝑥𝐼 (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
11 prdsmgp.y . . . 4 𝑌 = (𝑆Xs𝑅)
12 prdsmgp.m . . . . . 6 𝑀 = (mulGrp‘𝑌)
13 eqid 2771 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
1412, 13mgpbas 18980 . . . . 5 (Base‘𝑌) = (Base‘𝑀)
1514eqcomi 2780 . . . 4 (Base‘𝑀) = (Base‘𝑌)
16 prdsmgp.s . . . 4 (𝜑𝑆𝑊)
17 prdsmgp.i . . . 4 (𝜑𝐼𝑉)
1811, 15, 16, 17, 4prdsbas2 16596 . . 3 (𝜑 → (Base‘𝑀) = X𝑥𝐼 (Base‘(𝑅𝑥)))
19 prdsmgp.z . . . 4 𝑍 = (𝑆Xs(mulGrp ∘ 𝑅))
20 eqid 2771 . . . 4 (Base‘𝑍) = (Base‘𝑍)
21 fnmgp 18976 . . . . 5 mulGrp Fn V
22 ssv 3874 . . . . . 6 ran 𝑅 ⊆ V
2322a1i 11 . . . . 5 (𝜑 → ran 𝑅 ⊆ V)
24 fnco 6295 . . . . 5 ((mulGrp Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (mulGrp ∘ 𝑅) Fn 𝐼)
2521, 4, 23, 24mp3an2i 1446 . . . 4 (𝜑 → (mulGrp ∘ 𝑅) Fn 𝐼)
2619, 20, 16, 17, 25prdsbas2 16596 . . 3 (𝜑 → (Base‘𝑍) = X𝑥𝐼 (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
2710, 18, 263eqtr4d 2817 . 2 (𝜑 → (Base‘𝑀) = (Base‘𝑍))
28 eqid 2771 . . . 4 (.r𝑌) = (.r𝑌)
2912, 28mgpplusg 18978 . . 3 (.r𝑌) = (+g𝑀)
30 eqid 2771 . . . . . . . . 9 (mulGrp‘(𝑅𝑧)) = (mulGrp‘(𝑅𝑧))
31 eqid 2771 . . . . . . . . 9 (.r‘(𝑅𝑧)) = (.r‘(𝑅𝑧))
3230, 31mgpplusg 18978 . . . . . . . 8 (.r‘(𝑅𝑧)) = (+g‘(mulGrp‘(𝑅𝑧)))
33 fvco2 6584 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝑧𝐼) → ((mulGrp ∘ 𝑅)‘𝑧) = (mulGrp‘(𝑅𝑧)))
344, 33sylan 572 . . . . . . . . . 10 ((𝜑𝑧𝐼) → ((mulGrp ∘ 𝑅)‘𝑧) = (mulGrp‘(𝑅𝑧)))
3534eqcomd 2777 . . . . . . . . 9 ((𝜑𝑧𝐼) → (mulGrp‘(𝑅𝑧)) = ((mulGrp ∘ 𝑅)‘𝑧))
3635fveq2d 6500 . . . . . . . 8 ((𝜑𝑧𝐼) → (+g‘(mulGrp‘(𝑅𝑧))) = (+g‘((mulGrp ∘ 𝑅)‘𝑧)))
3732, 36syl5eq 2819 . . . . . . 7 ((𝜑𝑧𝐼) → (.r‘(𝑅𝑧)) = (+g‘((mulGrp ∘ 𝑅)‘𝑧)))
3837oveqd 6991 . . . . . 6 ((𝜑𝑧𝐼) → ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)) = ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))
3938mpteq2dva 5018 . . . . 5 (𝜑 → (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧))) = (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧))))
4027, 27, 39mpoeq123dv 7045 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)))) = (𝑥 ∈ (Base‘𝑍), 𝑦 ∈ (Base‘𝑍) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))))
41 fnex 6804 . . . . . 6 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
424, 17, 41syl2anc 576 . . . . 5 (𝜑𝑅 ∈ V)
43 fndm 6285 . . . . . 6 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
444, 43syl 17 . . . . 5 (𝜑 → dom 𝑅 = 𝐼)
4511, 16, 42, 15, 44, 28prdsmulr 16586 . . . 4 (𝜑 → (.r𝑌) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)))))
46 fnex 6804 . . . . . 6 (((mulGrp ∘ 𝑅) Fn 𝐼𝐼𝑉) → (mulGrp ∘ 𝑅) ∈ V)
4725, 17, 46syl2anc 576 . . . . 5 (𝜑 → (mulGrp ∘ 𝑅) ∈ V)
48 fndm 6285 . . . . . 6 ((mulGrp ∘ 𝑅) Fn 𝐼 → dom (mulGrp ∘ 𝑅) = 𝐼)
4925, 48syl 17 . . . . 5 (𝜑 → dom (mulGrp ∘ 𝑅) = 𝐼)
50 eqid 2771 . . . . 5 (+g𝑍) = (+g𝑍)
5119, 16, 47, 20, 49, 50prdsplusg 16585 . . . 4 (𝜑 → (+g𝑍) = (𝑥 ∈ (Base‘𝑍), 𝑦 ∈ (Base‘𝑍) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))))
5240, 45, 513eqtr4d 2817 . . 3 (𝜑 → (.r𝑌) = (+g𝑍))
5329, 52syl5eqr 2821 . 2 (𝜑 → (+g𝑀) = (+g𝑍))
5427, 53jca 504 1 (𝜑 → ((Base‘𝑀) = (Base‘𝑍) ∧ (+g𝑀) = (+g𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  Vcvv 3408  wss 3822  cmpt 5004  dom cdm 5403  ran crn 5404  ccom 5407   Fn wfn 6180  cfv 6185  (class class class)co 6974  cmpo 6976  Xcixp 8257  Basecbs 16337  +gcplusg 16419  .rcmulr 16420  Xscprds 16573  mulGrpcmgp 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-ixp 8258  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-sup 8699  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-z 11792  df-dec 11910  df-uz 12057  df-fz 12707  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-plusg 16432  df-mulr 16433  df-sca 16435  df-vsca 16436  df-ip 16437  df-tset 16438  df-ple 16439  df-ds 16441  df-hom 16443  df-cco 16444  df-prds 16575  df-mgp 18975
This theorem is referenced by:  prdsringd  19097  prdscrngd  19098  prds1  19099  pwsmgp  19103
  Copyright terms: Public domain W3C validator