MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmgp Structured version   Visualization version   GIF version

Theorem prdsmgp 20134
Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsmgp.y 𝑌 = (𝑆Xs𝑅)
prdsmgp.m 𝑀 = (mulGrp‘𝑌)
prdsmgp.z 𝑍 = (𝑆Xs(mulGrp ∘ 𝑅))
prdsmgp.i (𝜑𝐼𝑉)
prdsmgp.s (𝜑𝑆𝑊)
prdsmgp.r (𝜑𝑅 Fn 𝐼)
Assertion
Ref Expression
prdsmgp (𝜑 → ((Base‘𝑀) = (Base‘𝑍) ∧ (+g𝑀) = (+g𝑍)))

Proof of Theorem prdsmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . . 6 (mulGrp‘(𝑅𝑥)) = (mulGrp‘(𝑅𝑥))
2 eqid 2726 . . . . . 6 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
31, 2mgpbas 20123 . . . . 5 (Base‘(𝑅𝑥)) = (Base‘(mulGrp‘(𝑅𝑥)))
4 prdsmgp.r . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
5 fvco2 6999 . . . . . . . 8 ((𝑅 Fn 𝐼𝑥𝐼) → ((mulGrp ∘ 𝑅)‘𝑥) = (mulGrp‘(𝑅𝑥)))
64, 5sylan 578 . . . . . . 7 ((𝜑𝑥𝐼) → ((mulGrp ∘ 𝑅)‘𝑥) = (mulGrp‘(𝑅𝑥)))
76eqcomd 2732 . . . . . 6 ((𝜑𝑥𝐼) → (mulGrp‘(𝑅𝑥)) = ((mulGrp ∘ 𝑅)‘𝑥))
87fveq2d 6905 . . . . 5 ((𝜑𝑥𝐼) → (Base‘(mulGrp‘(𝑅𝑥))) = (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
93, 8eqtrid 2778 . . . 4 ((𝜑𝑥𝐼) → (Base‘(𝑅𝑥)) = (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
109ixpeq2dva 8941 . . 3 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) = X𝑥𝐼 (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
11 prdsmgp.y . . . 4 𝑌 = (𝑆Xs𝑅)
12 prdsmgp.m . . . . . 6 𝑀 = (mulGrp‘𝑌)
13 eqid 2726 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
1412, 13mgpbas 20123 . . . . 5 (Base‘𝑌) = (Base‘𝑀)
1514eqcomi 2735 . . . 4 (Base‘𝑀) = (Base‘𝑌)
16 prdsmgp.s . . . 4 (𝜑𝑆𝑊)
17 prdsmgp.i . . . 4 (𝜑𝐼𝑉)
1811, 15, 16, 17, 4prdsbas2 17484 . . 3 (𝜑 → (Base‘𝑀) = X𝑥𝐼 (Base‘(𝑅𝑥)))
19 prdsmgp.z . . . 4 𝑍 = (𝑆Xs(mulGrp ∘ 𝑅))
20 eqid 2726 . . . 4 (Base‘𝑍) = (Base‘𝑍)
21 fnmgp 20119 . . . . 5 mulGrp Fn V
22 ssv 4004 . . . . . 6 ran 𝑅 ⊆ V
2322a1i 11 . . . . 5 (𝜑 → ran 𝑅 ⊆ V)
24 fnco 6678 . . . . 5 ((mulGrp Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (mulGrp ∘ 𝑅) Fn 𝐼)
2521, 4, 23, 24mp3an2i 1463 . . . 4 (𝜑 → (mulGrp ∘ 𝑅) Fn 𝐼)
2619, 20, 16, 17, 25prdsbas2 17484 . . 3 (𝜑 → (Base‘𝑍) = X𝑥𝐼 (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
2710, 18, 263eqtr4d 2776 . 2 (𝜑 → (Base‘𝑀) = (Base‘𝑍))
28 eqid 2726 . . . 4 (.r𝑌) = (.r𝑌)
2912, 28mgpplusg 20121 . . 3 (.r𝑌) = (+g𝑀)
30 eqid 2726 . . . . . . . . 9 (mulGrp‘(𝑅𝑧)) = (mulGrp‘(𝑅𝑧))
31 eqid 2726 . . . . . . . . 9 (.r‘(𝑅𝑧)) = (.r‘(𝑅𝑧))
3230, 31mgpplusg 20121 . . . . . . . 8 (.r‘(𝑅𝑧)) = (+g‘(mulGrp‘(𝑅𝑧)))
33 fvco2 6999 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝑧𝐼) → ((mulGrp ∘ 𝑅)‘𝑧) = (mulGrp‘(𝑅𝑧)))
344, 33sylan 578 . . . . . . . . . 10 ((𝜑𝑧𝐼) → ((mulGrp ∘ 𝑅)‘𝑧) = (mulGrp‘(𝑅𝑧)))
3534eqcomd 2732 . . . . . . . . 9 ((𝜑𝑧𝐼) → (mulGrp‘(𝑅𝑧)) = ((mulGrp ∘ 𝑅)‘𝑧))
3635fveq2d 6905 . . . . . . . 8 ((𝜑𝑧𝐼) → (+g‘(mulGrp‘(𝑅𝑧))) = (+g‘((mulGrp ∘ 𝑅)‘𝑧)))
3732, 36eqtrid 2778 . . . . . . 7 ((𝜑𝑧𝐼) → (.r‘(𝑅𝑧)) = (+g‘((mulGrp ∘ 𝑅)‘𝑧)))
3837oveqd 7441 . . . . . 6 ((𝜑𝑧𝐼) → ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)) = ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))
3938mpteq2dva 5253 . . . . 5 (𝜑 → (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧))) = (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧))))
4027, 27, 39mpoeq123dv 7500 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)))) = (𝑥 ∈ (Base‘𝑍), 𝑦 ∈ (Base‘𝑍) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))))
41 fnex 7234 . . . . . 6 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
424, 17, 41syl2anc 582 . . . . 5 (𝜑𝑅 ∈ V)
434fndmd 6665 . . . . 5 (𝜑 → dom 𝑅 = 𝐼)
4411, 16, 42, 15, 43, 28prdsmulr 17474 . . . 4 (𝜑 → (.r𝑌) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)))))
45 fnex 7234 . . . . . 6 (((mulGrp ∘ 𝑅) Fn 𝐼𝐼𝑉) → (mulGrp ∘ 𝑅) ∈ V)
4625, 17, 45syl2anc 582 . . . . 5 (𝜑 → (mulGrp ∘ 𝑅) ∈ V)
4725fndmd 6665 . . . . 5 (𝜑 → dom (mulGrp ∘ 𝑅) = 𝐼)
48 eqid 2726 . . . . 5 (+g𝑍) = (+g𝑍)
4919, 16, 46, 20, 47, 48prdsplusg 17473 . . . 4 (𝜑 → (+g𝑍) = (𝑥 ∈ (Base‘𝑍), 𝑦 ∈ (Base‘𝑍) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))))
5040, 44, 493eqtr4d 2776 . . 3 (𝜑 → (.r𝑌) = (+g𝑍))
5129, 50eqtr3id 2780 . 2 (𝜑 → (+g𝑀) = (+g𝑍))
5227, 51jca 510 1 (𝜑 → ((Base‘𝑀) = (Base‘𝑍) ∧ (+g𝑀) = (+g𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  wss 3947  cmpt 5236  ran crn 5683  ccom 5686   Fn wfn 6549  cfv 6554  (class class class)co 7424  cmpo 7426  Xcixp 8926  Basecbs 17213  +gcplusg 17266  .rcmulr 17267  Xscprds 17460  mulGrpcmgp 20117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-prds 17462  df-mgp 20118
This theorem is referenced by:  prdsrngd  20159  prdsringd  20300  prdscrngd  20301  prds1  20302  pwsmgp  20306
  Copyright terms: Public domain W3C validator