MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmgp Structured version   Visualization version   GIF version

Theorem prdsmgp 20169
Description: The multiplicative monoid of a product is the product of the multiplicative monoids of the factors. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsmgp.y 𝑌 = (𝑆Xs𝑅)
prdsmgp.m 𝑀 = (mulGrp‘𝑌)
prdsmgp.z 𝑍 = (𝑆Xs(mulGrp ∘ 𝑅))
prdsmgp.i (𝜑𝐼𝑉)
prdsmgp.s (𝜑𝑆𝑊)
prdsmgp.r (𝜑𝑅 Fn 𝐼)
Assertion
Ref Expression
prdsmgp (𝜑 → ((Base‘𝑀) = (Base‘𝑍) ∧ (+g𝑀) = (+g𝑍)))

Proof of Theorem prdsmgp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . 6 (mulGrp‘(𝑅𝑥)) = (mulGrp‘(𝑅𝑥))
2 eqid 2735 . . . . . 6 (Base‘(𝑅𝑥)) = (Base‘(𝑅𝑥))
31, 2mgpbas 20158 . . . . 5 (Base‘(𝑅𝑥)) = (Base‘(mulGrp‘(𝑅𝑥)))
4 prdsmgp.r . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
5 fvco2 7006 . . . . . . . 8 ((𝑅 Fn 𝐼𝑥𝐼) → ((mulGrp ∘ 𝑅)‘𝑥) = (mulGrp‘(𝑅𝑥)))
64, 5sylan 580 . . . . . . 7 ((𝜑𝑥𝐼) → ((mulGrp ∘ 𝑅)‘𝑥) = (mulGrp‘(𝑅𝑥)))
76eqcomd 2741 . . . . . 6 ((𝜑𝑥𝐼) → (mulGrp‘(𝑅𝑥)) = ((mulGrp ∘ 𝑅)‘𝑥))
87fveq2d 6911 . . . . 5 ((𝜑𝑥𝐼) → (Base‘(mulGrp‘(𝑅𝑥))) = (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
93, 8eqtrid 2787 . . . 4 ((𝜑𝑥𝐼) → (Base‘(𝑅𝑥)) = (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
109ixpeq2dva 8951 . . 3 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) = X𝑥𝐼 (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
11 prdsmgp.y . . . 4 𝑌 = (𝑆Xs𝑅)
12 prdsmgp.m . . . . . 6 𝑀 = (mulGrp‘𝑌)
13 eqid 2735 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
1412, 13mgpbas 20158 . . . . 5 (Base‘𝑌) = (Base‘𝑀)
1514eqcomi 2744 . . . 4 (Base‘𝑀) = (Base‘𝑌)
16 prdsmgp.s . . . 4 (𝜑𝑆𝑊)
17 prdsmgp.i . . . 4 (𝜑𝐼𝑉)
1811, 15, 16, 17, 4prdsbas2 17516 . . 3 (𝜑 → (Base‘𝑀) = X𝑥𝐼 (Base‘(𝑅𝑥)))
19 prdsmgp.z . . . 4 𝑍 = (𝑆Xs(mulGrp ∘ 𝑅))
20 eqid 2735 . . . 4 (Base‘𝑍) = (Base‘𝑍)
21 fnmgp 20154 . . . . 5 mulGrp Fn V
22 ssv 4020 . . . . . 6 ran 𝑅 ⊆ V
2322a1i 11 . . . . 5 (𝜑 → ran 𝑅 ⊆ V)
24 fnco 6687 . . . . 5 ((mulGrp Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V) → (mulGrp ∘ 𝑅) Fn 𝐼)
2521, 4, 23, 24mp3an2i 1465 . . . 4 (𝜑 → (mulGrp ∘ 𝑅) Fn 𝐼)
2619, 20, 16, 17, 25prdsbas2 17516 . . 3 (𝜑 → (Base‘𝑍) = X𝑥𝐼 (Base‘((mulGrp ∘ 𝑅)‘𝑥)))
2710, 18, 263eqtr4d 2785 . 2 (𝜑 → (Base‘𝑀) = (Base‘𝑍))
28 eqid 2735 . . . 4 (.r𝑌) = (.r𝑌)
2912, 28mgpplusg 20156 . . 3 (.r𝑌) = (+g𝑀)
30 eqid 2735 . . . . . . . . 9 (mulGrp‘(𝑅𝑧)) = (mulGrp‘(𝑅𝑧))
31 eqid 2735 . . . . . . . . 9 (.r‘(𝑅𝑧)) = (.r‘(𝑅𝑧))
3230, 31mgpplusg 20156 . . . . . . . 8 (.r‘(𝑅𝑧)) = (+g‘(mulGrp‘(𝑅𝑧)))
33 fvco2 7006 . . . . . . . . . . 11 ((𝑅 Fn 𝐼𝑧𝐼) → ((mulGrp ∘ 𝑅)‘𝑧) = (mulGrp‘(𝑅𝑧)))
344, 33sylan 580 . . . . . . . . . 10 ((𝜑𝑧𝐼) → ((mulGrp ∘ 𝑅)‘𝑧) = (mulGrp‘(𝑅𝑧)))
3534eqcomd 2741 . . . . . . . . 9 ((𝜑𝑧𝐼) → (mulGrp‘(𝑅𝑧)) = ((mulGrp ∘ 𝑅)‘𝑧))
3635fveq2d 6911 . . . . . . . 8 ((𝜑𝑧𝐼) → (+g‘(mulGrp‘(𝑅𝑧))) = (+g‘((mulGrp ∘ 𝑅)‘𝑧)))
3732, 36eqtrid 2787 . . . . . . 7 ((𝜑𝑧𝐼) → (.r‘(𝑅𝑧)) = (+g‘((mulGrp ∘ 𝑅)‘𝑧)))
3837oveqd 7448 . . . . . 6 ((𝜑𝑧𝐼) → ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)) = ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))
3938mpteq2dva 5248 . . . . 5 (𝜑 → (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧))) = (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧))))
4027, 27, 39mpoeq123dv 7508 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)))) = (𝑥 ∈ (Base‘𝑍), 𝑦 ∈ (Base‘𝑍) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))))
41 fnex 7237 . . . . . 6 ((𝑅 Fn 𝐼𝐼𝑉) → 𝑅 ∈ V)
424, 17, 41syl2anc 584 . . . . 5 (𝜑𝑅 ∈ V)
434fndmd 6674 . . . . 5 (𝜑 → dom 𝑅 = 𝐼)
4411, 16, 42, 15, 43, 28prdsmulr 17506 . . . 4 (𝜑 → (.r𝑌) = (𝑥 ∈ (Base‘𝑀), 𝑦 ∈ (Base‘𝑀) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(.r‘(𝑅𝑧))(𝑦𝑧)))))
45 fnex 7237 . . . . . 6 (((mulGrp ∘ 𝑅) Fn 𝐼𝐼𝑉) → (mulGrp ∘ 𝑅) ∈ V)
4625, 17, 45syl2anc 584 . . . . 5 (𝜑 → (mulGrp ∘ 𝑅) ∈ V)
4725fndmd 6674 . . . . 5 (𝜑 → dom (mulGrp ∘ 𝑅) = 𝐼)
48 eqid 2735 . . . . 5 (+g𝑍) = (+g𝑍)
4919, 16, 46, 20, 47, 48prdsplusg 17505 . . . 4 (𝜑 → (+g𝑍) = (𝑥 ∈ (Base‘𝑍), 𝑦 ∈ (Base‘𝑍) ↦ (𝑧𝐼 ↦ ((𝑥𝑧)(+g‘((mulGrp ∘ 𝑅)‘𝑧))(𝑦𝑧)))))
5040, 44, 493eqtr4d 2785 . . 3 (𝜑 → (.r𝑌) = (+g𝑍))
5129, 50eqtr3id 2789 . 2 (𝜑 → (+g𝑀) = (+g𝑍))
5227, 51jca 511 1 (𝜑 → ((Base‘𝑀) = (Base‘𝑍) ∧ (+g𝑀) = (+g𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  cmpt 5231  ran crn 5690  ccom 5693   Fn wfn 6558  cfv 6563  (class class class)co 7431  cmpo 7433  Xcixp 8936  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Xscprds 17492  mulGrpcmgp 20152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-prds 17494  df-mgp 20153
This theorem is referenced by:  prdsrngd  20194  prdsringd  20335  prdscrngd  20336  prds1  20337  pwsmgp  20341
  Copyright terms: Public domain W3C validator