Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonn0icc2 Structured version   Visualization version   GIF version

Theorem vonn0icc2 46648
Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonn0icc2.k 𝑘𝜑
vonn0icc2.x (𝜑𝑋 ∈ Fin)
vonn0icc2.n (𝜑𝑋 ≠ ∅)
vonn0icc2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonn0icc2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
vonn0icc2.i 𝐼 = X𝑘𝑋 (𝐴[,]𝐵)
Assertion
Ref Expression
vonn0icc2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem vonn0icc2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vonn0icc2.i . . . . 5 𝐼 = X𝑘𝑋 (𝐴[,]𝐵)
21a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 (𝐴[,]𝐵))
3 simpr 484 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗𝑋)
4 vonn0icc2.k . . . . . . . . . . 11 𝑘𝜑
5 nfv 1912 . . . . . . . . . . 11 𝑘 𝑗𝑋
64, 5nfan 1897 . . . . . . . . . 10 𝑘(𝜑𝑗𝑋)
7 nfcsb1v 3933 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐴
8 nfcv 2903 . . . . . . . . . . 11 𝑘
97, 8nfel 2918 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
106, 9nfim 1894 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
11 eleq1w 2822 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
1211anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
13 csbeq1a 3922 . . . . . . . . . . 11 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1413eleq1d 2824 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1512, 14imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
16 vonn0icc2.a . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1710, 15, 16chvarfv 2238 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
18 eqid 2735 . . . . . . . . 9 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1918fvmpts 7019 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
203, 17, 19syl2anc 584 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
21 nfcsb1v 3933 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
2221, 8nfel 2918 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
236, 22nfim 1894 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3922 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2824 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2612, 25imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 vonn0icc2.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvarfv 2238 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2735 . . . . . . . . 9 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3029fvmpts 7019 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
313, 28, 30syl2anc 584 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 7449 . . . . . 6 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
3332ixpeq2dva 8951 . . . . 5 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
34 nfcv 2903 . . . . . . . 8 𝑘[,]
357, 34, 21nfov 7461 . . . . . . 7 𝑘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)
36 nfcv 2903 . . . . . . 7 𝑗(𝐴[,]𝐵)
3713equcoms 2017 . . . . . . . . . 10 (𝑗 = 𝑘𝐴 = 𝑗 / 𝑘𝐴)
3837eqcomd 2741 . . . . . . . . 9 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
39 eqidd 2736 . . . . . . . . 9 (𝑗 = 𝑘𝐴 = 𝐴)
4038, 39eqtrd 2775 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
4124equcoms 2017 . . . . . . . . 9 (𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵)
4241eqcomd 2741 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵)
4340, 42oveq12d 7449 . . . . . . 7 (𝑗 = 𝑘 → (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = (𝐴[,]𝐵))
4435, 36, 43cbvixp 8953 . . . . . 6 X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,]𝐵)
4544a1i 11 . . . . 5 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,]𝐵))
4633, 45eqtrd 2775 . . . 4 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑘𝑋 (𝐴[,]𝐵))
472, 46eqtr4d 2778 . . 3 (𝜑𝐼 = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)))
4847fveq2d 6911 . 2 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))))
49 vonn0icc2.x . . 3 (𝜑𝑋 ∈ Fin)
50 vonn0icc2.n . . 3 (𝜑𝑋 ≠ ∅)
514, 16, 18fmptdf 7137 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
524, 27, 29fmptdf 7137 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
53 eqid 2735 . . 3 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))
5449, 50, 51, 52, 53vonn0icc 46644 . 2 (𝜑 → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))))
5532fveq2d 6911 . . . 4 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)))
5655prodeq2dv 15955 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)))
5743fveq2d 6911 . . . . 5 (𝑗 = 𝑘 → (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = (vol‘(𝐴[,]𝐵)))
58 nfcv 2903 . . . . 5 𝑘𝑋
59 nfcv 2903 . . . . 5 𝑗𝑋
60 nfcv 2903 . . . . . 6 𝑘vol
6160, 35nffv 6917 . . . . 5 𝑘(vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
62 nfcv 2903 . . . . 5 𝑗(vol‘(𝐴[,]𝐵))
6357, 58, 59, 61, 62cbvprod 15946 . . . 4 𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵))
6463a1i 11 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
6556, 64eqtrd 2775 . 2 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
6648, 54, 653eqtrd 2779 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wne 2938  csb 3908  c0 4339  cmpt 5231  cfv 6563  (class class class)co 7431  Xcixp 8936  Fincfn 8984  cr 11152  [,]cicc 13387  cprod 15936  volcvol 25512  volncvoln 46494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-prod 15937  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-pws 17496  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-abv 20827  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-refld 21641  df-phl 21662  df-dsmm 21770  df-frlm 21785  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348  df-nm 24611  df-ngp 24612  df-tng 24613  df-nrg 24614  df-nlm 24615  df-cncf 24918  df-clm 25110  df-cph 25216  df-tcph 25217  df-rrx 25433  df-ovol 25513  df-vol 25514  df-salg 46265  df-sumge0 46319  df-mea 46406  df-ome 46446  df-caragen 46448  df-ovoln 46493  df-voln 46495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator