| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0icc2 | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| vonn0icc2.k | ⊢ Ⅎ𝑘𝜑 |
| vonn0icc2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| vonn0icc2.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| vonn0icc2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| vonn0icc2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| vonn0icc2.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴[,]𝐵) |
| Ref | Expression |
|---|---|
| vonn0icc2 | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,]𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vonn0icc2.i | . . . . 5 ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴[,]𝐵) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
| 3 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
| 4 | vonn0icc2.k | . . . . . . . . . . 11 ⊢ Ⅎ𝑘𝜑 | |
| 5 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑋 | |
| 6 | 4, 5 | nfan 1899 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) |
| 7 | nfcsb1v 3883 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 | |
| 8 | nfcv 2891 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘ℝ | |
| 9 | 7, 8 | nfel 2906 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ |
| 10 | 6, 9 | nfim 1896 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 11 | eleq1w 2811 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) | |
| 12 | 11 | anbi2d 630 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) |
| 13 | csbeq1a 3873 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
| 14 | 13 | eleq1d 2813 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) |
| 15 | 12, 14 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) |
| 16 | vonn0icc2.a | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
| 17 | 10, 15, 16 | chvarfv 2241 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 18 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) | |
| 19 | 18 | fvmpts 6953 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 20 | 3, 17, 19 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 21 | nfcsb1v 3883 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 22 | 21, 8 | nfel 2906 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
| 23 | 6, 22 | nfim 1896 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 24 | csbeq1a 3873 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 25 | 24 | eleq1d 2813 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
| 26 | 12, 25 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
| 27 | vonn0icc2.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
| 28 | 23, 26, 27 | chvarfv 2241 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 29 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) | |
| 30 | 29 | fvmpts 6953 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 31 | 3, 28, 30 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 32 | 20, 31 | oveq12d 7387 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵)) |
| 33 | 32 | ixpeq2dva 8862 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵)) |
| 34 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑘[,] | |
| 35 | 7, 34, 21 | nfov 7399 | . . . . . . 7 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵) |
| 36 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑗(𝐴[,]𝐵) | |
| 37 | 13 | equcoms 2020 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) |
| 38 | 37 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) |
| 39 | eqidd 2730 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐴 = 𝐴) | |
| 40 | 38, 39 | eqtrd 2764 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) |
| 41 | 24 | equcoms 2020 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
| 42 | 41 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) |
| 43 | 40, 42 | oveq12d 7387 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵) = (𝐴[,]𝐵)) |
| 44 | 35, 36, 43 | cbvixp 8864 | . . . . . 6 ⊢ X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,]𝐵) |
| 45 | 44 | a1i 11 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
| 46 | 33, 45 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑘 ∈ 𝑋 (𝐴[,]𝐵)) |
| 47 | 2, 46 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → 𝐼 = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) |
| 48 | 47 | fveq2d 6844 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
| 49 | vonn0icc2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 50 | vonn0icc2.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 51 | 4, 16, 18 | fmptdf 7071 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
| 52 | 4, 27, 29 | fmptdf 7071 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
| 53 | eqid 2729 | . . 3 ⊢ X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) | |
| 54 | 49, 50, 51, 52, 53 | vonn0icc 46679 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
| 55 | 32 | fveq2d 6844 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵))) |
| 56 | 55 | prodeq2dv 15864 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵))) |
| 57 | 43 | fveq2d 6844 | . . . . 5 ⊢ (𝑗 = 𝑘 → (vol‘(⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(𝐴[,]𝐵))) |
| 58 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘𝑋 | |
| 59 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑗𝑋 | |
| 60 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘vol | |
| 61 | 60, 35 | nffv 6850 | . . . . 5 ⊢ Ⅎ𝑘(vol‘(⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵)) |
| 62 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑗(vol‘(𝐴[,]𝐵)) | |
| 63 | 57, 58, 59, 61, 62 | cbvprod 15855 | . . . 4 ⊢ ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,]𝐵)) |
| 64 | 63 | a1i 11 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴[,]⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,]𝐵))) |
| 65 | 56, 64 | eqtrd 2764 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,]((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,]𝐵))) |
| 66 | 48, 54, 65 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴[,]𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ⦋csb 3859 ∅c0 4292 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Xcixp 8847 Fincfn 8895 ℝcr 11043 [,]cicc 13285 ∏cprod 15845 volcvol 25397 volncvoln 46529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-prod 15846 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-pws 17388 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mhm 18692 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-mulg 18982 df-subg 19037 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20466 df-subrg 20490 df-drng 20651 df-field 20652 df-abv 20729 df-staf 20759 df-srng 20760 df-lmod 20800 df-lss 20870 df-lmhm 20961 df-lvec 21042 df-sra 21112 df-rgmod 21113 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-cnfld 21297 df-refld 21547 df-phl 21568 df-dsmm 21674 df-frlm 21689 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cn 23147 df-cnp 23148 df-cmp 23307 df-tx 23482 df-hmeo 23675 df-xms 24241 df-ms 24242 df-tms 24243 df-nm 24503 df-ngp 24504 df-tng 24505 df-nrg 24506 df-nlm 24507 df-cncf 24804 df-clm 24996 df-cph 25101 df-tcph 25102 df-rrx 25318 df-ovol 25398 df-vol 25399 df-salg 46300 df-sumge0 46354 df-mea 46441 df-ome 46481 df-caragen 46483 df-ovoln 46528 df-voln 46530 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |