Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonn0icc2 Structured version   Visualization version   GIF version

Theorem vonn0icc2 46688
Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonn0icc2.k 𝑘𝜑
vonn0icc2.x (𝜑𝑋 ∈ Fin)
vonn0icc2.n (𝜑𝑋 ≠ ∅)
vonn0icc2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonn0icc2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
vonn0icc2.i 𝐼 = X𝑘𝑋 (𝐴[,]𝐵)
Assertion
Ref Expression
vonn0icc2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem vonn0icc2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vonn0icc2.i . . . . 5 𝐼 = X𝑘𝑋 (𝐴[,]𝐵)
21a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 (𝐴[,]𝐵))
3 simpr 484 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗𝑋)
4 vonn0icc2.k . . . . . . . . . . 11 𝑘𝜑
5 nfv 1914 . . . . . . . . . . 11 𝑘 𝑗𝑋
64, 5nfan 1899 . . . . . . . . . 10 𝑘(𝜑𝑗𝑋)
7 nfcsb1v 3903 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐴
8 nfcv 2899 . . . . . . . . . . 11 𝑘
97, 8nfel 2914 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
106, 9nfim 1896 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
11 eleq1w 2818 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
1211anbi2d 630 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
13 csbeq1a 3893 . . . . . . . . . . 11 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1413eleq1d 2820 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1512, 14imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
16 vonn0icc2.a . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1710, 15, 16chvarfv 2241 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
18 eqid 2736 . . . . . . . . 9 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1918fvmpts 6994 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
203, 17, 19syl2anc 584 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
21 nfcsb1v 3903 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
2221, 8nfel 2914 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
236, 22nfim 1896 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3893 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2820 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2612, 25imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 vonn0icc2.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvarfv 2241 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2736 . . . . . . . . 9 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3029fvmpts 6994 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
313, 28, 30syl2anc 584 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 7428 . . . . . 6 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
3332ixpeq2dva 8931 . . . . 5 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
34 nfcv 2899 . . . . . . . 8 𝑘[,]
357, 34, 21nfov 7440 . . . . . . 7 𝑘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)
36 nfcv 2899 . . . . . . 7 𝑗(𝐴[,]𝐵)
3713equcoms 2020 . . . . . . . . . 10 (𝑗 = 𝑘𝐴 = 𝑗 / 𝑘𝐴)
3837eqcomd 2742 . . . . . . . . 9 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
39 eqidd 2737 . . . . . . . . 9 (𝑗 = 𝑘𝐴 = 𝐴)
4038, 39eqtrd 2771 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
4124equcoms 2020 . . . . . . . . 9 (𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵)
4241eqcomd 2742 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵)
4340, 42oveq12d 7428 . . . . . . 7 (𝑗 = 𝑘 → (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = (𝐴[,]𝐵))
4435, 36, 43cbvixp 8933 . . . . . 6 X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,]𝐵)
4544a1i 11 . . . . 5 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,]𝐵))
4633, 45eqtrd 2771 . . . 4 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑘𝑋 (𝐴[,]𝐵))
472, 46eqtr4d 2774 . . 3 (𝜑𝐼 = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)))
4847fveq2d 6885 . 2 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))))
49 vonn0icc2.x . . 3 (𝜑𝑋 ∈ Fin)
50 vonn0icc2.n . . 3 (𝜑𝑋 ≠ ∅)
514, 16, 18fmptdf 7112 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
524, 27, 29fmptdf 7112 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
53 eqid 2736 . . 3 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))
5449, 50, 51, 52, 53vonn0icc 46684 . 2 (𝜑 → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))))
5532fveq2d 6885 . . . 4 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)))
5655prodeq2dv 15943 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)))
5743fveq2d 6885 . . . . 5 (𝑗 = 𝑘 → (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = (vol‘(𝐴[,]𝐵)))
58 nfcv 2899 . . . . 5 𝑘𝑋
59 nfcv 2899 . . . . 5 𝑗𝑋
60 nfcv 2899 . . . . . 6 𝑘vol
6160, 35nffv 6891 . . . . 5 𝑘(vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
62 nfcv 2899 . . . . 5 𝑗(vol‘(𝐴[,]𝐵))
6357, 58, 59, 61, 62cbvprod 15934 . . . 4 𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵))
6463a1i 11 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
6556, 64eqtrd 2771 . 2 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
6648, 54, 653eqtrd 2775 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2933  csb 3879  c0 4313  cmpt 5206  cfv 6536  (class class class)co 7410  Xcixp 8916  Fincfn 8964  cr 11133  [,]cicc 13370  cprod 15924  volcvol 25421  volncvoln 46534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-prod 15925  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-pws 17468  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-drng 20696  df-field 20697  df-abv 20774  df-staf 20804  df-srng 20805  df-lmod 20824  df-lss 20894  df-lmhm 20985  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-refld 21570  df-phl 21591  df-dsmm 21697  df-frlm 21712  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-nm 24526  df-ngp 24527  df-tng 24528  df-nrg 24529  df-nlm 24530  df-cncf 24827  df-clm 25019  df-cph 25125  df-tcph 25126  df-rrx 25342  df-ovol 25422  df-vol 25423  df-salg 46305  df-sumge0 46359  df-mea 46446  df-ome 46486  df-caragen 46488  df-ovoln 46533  df-voln 46535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator