Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonn0icc2 Structured version   Visualization version   GIF version

Theorem vonn0icc2 42351
Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonn0icc2.k 𝑘𝜑
vonn0icc2.x (𝜑𝑋 ∈ Fin)
vonn0icc2.n (𝜑𝑋 ≠ ∅)
vonn0icc2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonn0icc2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
vonn0icc2.i 𝐼 = X𝑘𝑋 (𝐴[,]𝐵)
Assertion
Ref Expression
vonn0icc2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem vonn0icc2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vonn0icc2.i . . . . 5 𝐼 = X𝑘𝑋 (𝐴[,]𝐵)
21a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 (𝐴[,]𝐵))
3 simpr 477 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗𝑋)
4 vonn0icc2.k . . . . . . . . . . 11 𝑘𝜑
5 nfv 1873 . . . . . . . . . . 11 𝑘 𝑗𝑋
64, 5nfan 1862 . . . . . . . . . 10 𝑘(𝜑𝑗𝑋)
7 nfcsb1v 3800 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐴
8 nfcv 2926 . . . . . . . . . . 11 𝑘
97, 8nfel 2938 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
106, 9nfim 1859 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
11 eleq1w 2842 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
1211anbi2d 619 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
13 csbeq1a 3791 . . . . . . . . . . 11 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1413eleq1d 2844 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1512, 14imbi12d 337 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
16 vonn0icc2.a . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1710, 15, 16chvar 2324 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
18 eqid 2772 . . . . . . . . 9 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1918fvmpts 6592 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
203, 17, 19syl2anc 576 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
21 nfcsb1v 3800 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
2221, 8nfel 2938 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
236, 22nfim 1859 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3791 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2844 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2612, 25imbi12d 337 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 vonn0icc2.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvar 2324 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2772 . . . . . . . . 9 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3029fvmpts 6592 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
313, 28, 30syl2anc 576 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 6988 . . . . . 6 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
3332ixpeq2dva 8266 . . . . 5 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
34 nfcv 2926 . . . . . . . 8 𝑘[,]
357, 34, 21nfov 7000 . . . . . . 7 𝑘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)
36 nfcv 2926 . . . . . . 7 𝑗(𝐴[,]𝐵)
3713equcoms 1976 . . . . . . . . . 10 (𝑗 = 𝑘𝐴 = 𝑗 / 𝑘𝐴)
3837eqcomd 2778 . . . . . . . . 9 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
39 eqidd 2773 . . . . . . . . 9 (𝑗 = 𝑘𝐴 = 𝐴)
4038, 39eqtrd 2808 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
4124equcoms 1976 . . . . . . . . 9 (𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵)
4241eqcomd 2778 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵)
4340, 42oveq12d 6988 . . . . . . 7 (𝑗 = 𝑘 → (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = (𝐴[,]𝐵))
4435, 36, 43cbvixp 8268 . . . . . 6 X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,]𝐵)
4544a1i 11 . . . . 5 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴[,]𝐵))
4633, 45eqtrd 2808 . . . 4 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑘𝑋 (𝐴[,]𝐵))
472, 46eqtr4d 2811 . . 3 (𝜑𝐼 = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)))
4847fveq2d 6497 . 2 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))))
49 vonn0icc2.x . . 3 (𝜑𝑋 ∈ Fin)
50 vonn0icc2.n . . 3 (𝜑𝑋 ≠ ∅)
514, 16, 18fmptdf 6698 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
524, 27, 29fmptdf 6698 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
53 eqid 2772 . . 3 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))
5449, 50, 51, 52, 53vonn0icc 42347 . 2 (𝜑 → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))))
5532fveq2d 6497 . . . 4 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)))
5655prodeq2dv 15127 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)))
5743fveq2d 6497 . . . . 5 (𝑗 = 𝑘 → (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = (vol‘(𝐴[,]𝐵)))
58 nfcv 2926 . . . . 5 𝑘𝑋
59 nfcv 2926 . . . . 5 𝑗𝑋
60 nfcv 2926 . . . . . 6 𝑘vol
6160, 35nffv 6503 . . . . 5 𝑘(vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵))
62 nfcv 2926 . . . . 5 𝑗(vol‘(𝐴[,]𝐵))
6357, 58, 59, 61, 62cbvprod 15119 . . . 4 𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵))
6463a1i 11 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴[,]𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
6556, 64eqtrd 2808 . 2 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,]((𝑘𝑋𝐵)‘𝑗))) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
6648, 54, 653eqtrd 2812 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wnf 1746  wcel 2048  wne 2961  csb 3782  c0 4173  cmpt 5002  cfv 6182  (class class class)co 6970  Xcixp 8251  Fincfn 8298  cr 10326  [,]cicc 12550  cprod 15109  volcvol 23757  volncvoln 42197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cc 9647  ax-ac2 9675  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-disj 4892  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-of 7221  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-tpos 7688  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-omul 7902  df-er 8081  df-map 8200  df-pm 8201  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-dju 9116  df-card 9154  df-acn 9157  df-ac 9328  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-fl 12970  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-clim 14696  df-rlim 14697  df-sum 14894  df-prod 15110  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-starv 16426  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-unif 16434  df-hom 16435  df-cco 16436  df-rest 16542  df-topn 16543  df-0g 16561  df-gsum 16562  df-topgen 16563  df-pt 16564  df-prds 16567  df-pws 16569  df-xrs 16621  df-qtop 16626  df-imas 16627  df-xps 16629  df-mre 16705  df-mrc 16706  df-acs 16708  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-mhm 17793  df-submnd 17794  df-grp 17884  df-minusg 17885  df-sbg 17886  df-mulg 18002  df-subg 18050  df-ghm 18117  df-cntz 18208  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-ring 19012  df-cring 19013  df-oppr 19086  df-dvdsr 19104  df-unit 19105  df-invr 19135  df-dvr 19146  df-rnghom 19180  df-drng 19217  df-field 19218  df-subrg 19246  df-abv 19300  df-staf 19328  df-srng 19329  df-lmod 19348  df-lss 19416  df-lmhm 19506  df-lvec 19587  df-sra 19656  df-rgmod 19657  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-cnfld 20238  df-refld 20441  df-phl 20462  df-dsmm 20568  df-frlm 20583  df-top 21196  df-topon 21213  df-topsp 21235  df-bases 21248  df-cn 21529  df-cnp 21530  df-cmp 21689  df-tx 21864  df-hmeo 22057  df-xms 22623  df-ms 22624  df-tms 22625  df-nm 22885  df-ngp 22886  df-tng 22887  df-nrg 22888  df-nlm 22889  df-cncf 23179  df-clm 23360  df-cph 23465  df-tcph 23466  df-rrx 23681  df-ovol 23758  df-vol 23759  df-salg 41971  df-sumge0 42022  df-mea 42109  df-ome 42149  df-caragen 42151  df-ovoln 42196  df-voln 42198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator