![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0ioo2 | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
vonn0ioo2.k | ⊢ Ⅎ𝑘𝜑 |
vonn0ioo2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
vonn0ioo2.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
vonn0ioo2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
vonn0ioo2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
vonn0ioo2.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) |
Ref | Expression |
---|---|
vonn0ioo2 | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonn0ioo2.i | . . . . 5 ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
3 | simpr 477 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
4 | vonn0ioo2.k | . . . . . . . . . . 11 ⊢ Ⅎ𝑘𝜑 | |
5 | nfv 1874 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑋 | |
6 | 4, 5 | nfan 1863 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) |
7 | nfcsb1v 3806 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 | |
8 | nfcv 2934 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘ℝ | |
9 | 7, 8 | nfel 2946 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ |
10 | 6, 9 | nfim 1860 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
11 | eleq1w 2850 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) | |
12 | 11 | anbi2d 620 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) |
13 | csbeq1a 3797 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
14 | 13 | eleq1d 2852 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) |
15 | 12, 14 | imbi12d 337 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) |
16 | vonn0ioo2.a | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
17 | 10, 15, 16 | chvar 2327 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
18 | eqid 2780 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) | |
19 | 18 | fvmpts 6604 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
20 | 3, 17, 19 | syl2anc 576 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
21 | nfcsb1v 3806 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
22 | 21, 8 | nfel 2946 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
23 | 6, 22 | nfim 1860 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
24 | csbeq1a 3797 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
25 | 24 | eleq1d 2852 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
26 | 12, 25 | imbi12d 337 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
27 | vonn0ioo2.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
28 | 23, 26, 27 | chvar 2327 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
29 | eqid 2780 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) | |
30 | 29 | fvmpts 6604 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
31 | 3, 28, 30 | syl2anc 576 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
32 | 20, 31 | oveq12d 7000 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
33 | 32 | ixpeq2dva 8280 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
34 | nfcv 2934 | . . . . . . . 8 ⊢ Ⅎ𝑘(,) | |
35 | 7, 34, 21 | nfov 7012 | . . . . . . 7 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) |
36 | nfcv 2934 | . . . . . . 7 ⊢ Ⅎ𝑗(𝐴(,)𝐵) | |
37 | 13 | equcoms 1978 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) |
38 | 37 | eqcomd 2786 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) |
39 | eqidd 2781 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐴 = 𝐴) | |
40 | 38, 39 | eqtrd 2816 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) |
41 | 24 | equcoms 1978 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
42 | 41 | eqcomd 2786 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) |
43 | 40, 42 | oveq12d 7000 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = (𝐴(,)𝐵)) |
44 | 35, 36, 43 | cbvixp 8282 | . . . . . 6 ⊢ X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) |
45 | 44 | a1i 11 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
46 | 33, 45 | eqtrd 2816 | . . . 4 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
47 | 2, 46 | eqtr4d 2819 | . . 3 ⊢ (𝜑 → 𝐼 = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) |
48 | 47 | fveq2d 6508 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
49 | vonn0ioo2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
50 | vonn0ioo2.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
51 | 4, 16, 18 | fmptdf 6710 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
52 | 4, 27, 29 | fmptdf 6710 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
53 | eqid 2780 | . . 3 ⊢ X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) | |
54 | 49, 50, 51, 52, 53 | vonn0ioo 42435 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
55 | 20, 31 | oveq12d 7000 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
56 | 55 | fveq2d 6508 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵))) |
57 | 17, 28 | voliooico 41743 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵))) |
58 | 57 | eqcomd 2786 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
59 | 56, 58 | eqtrd 2816 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
60 | 59 | prodeq2dv 15143 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
61 | 43 | fveq2d 6508 | . . . . 5 ⊢ (𝑗 = 𝑘 → (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(𝐴(,)𝐵))) |
62 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑘𝑋 | |
63 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑗𝑋 | |
64 | nfcv 2934 | . . . . . 6 ⊢ Ⅎ𝑘vol | |
65 | 64, 35 | nffv 6514 | . . . . 5 ⊢ Ⅎ𝑘(vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
66 | nfcv 2934 | . . . . 5 ⊢ Ⅎ𝑗(vol‘(𝐴(,)𝐵)) | |
67 | 61, 62, 63, 65, 66 | cbvprod 15135 | . . . 4 ⊢ ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵)) |
68 | 67 | a1i 11 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
69 | 60, 68 | eqtrd 2816 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
70 | 48, 54, 69 | 3eqtrd 2820 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 Ⅎwnf 1747 ∈ wcel 2051 ≠ wne 2969 ⦋csb 3788 ∅c0 4181 ↦ cmpt 5013 ‘cfv 6193 (class class class)co 6982 Xcixp 8265 Fincfn 8312 ℝcr 10340 (,)cioo 12560 [,)cico 12562 ∏cprod 15125 volcvol 23782 volncvoln 42286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-inf2 8904 ax-cc 9661 ax-ac2 9689 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 ax-addf 10420 ax-mulf 10421 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-iin 4800 df-disj 4903 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-se 5371 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-of 7233 df-om 7403 df-1st 7507 df-2nd 7508 df-supp 7640 df-tpos 7701 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-2o 7912 df-oadd 7915 df-omul 7916 df-er 8095 df-map 8214 df-pm 8215 df-ixp 8266 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-fsupp 8635 df-fi 8676 df-sup 8707 df-inf 8708 df-oi 8775 df-dju 9130 df-card 9168 df-acn 9171 df-ac 9342 df-cda 9394 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-q 12169 df-rp 12211 df-xneg 12330 df-xadd 12331 df-xmul 12332 df-ioo 12564 df-ico 12566 df-icc 12567 df-fz 12715 df-fzo 12856 df-fl 12983 df-seq 13191 df-exp 13251 df-hash 13512 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-clim 14712 df-rlim 14713 df-sum 14910 df-prod 15126 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-ress 16353 df-plusg 16440 df-mulr 16441 df-starv 16442 df-sca 16443 df-vsca 16444 df-ip 16445 df-tset 16446 df-ple 16447 df-ds 16449 df-unif 16450 df-hom 16451 df-cco 16452 df-rest 16558 df-topn 16559 df-0g 16577 df-gsum 16578 df-topgen 16579 df-pt 16580 df-prds 16583 df-pws 16585 df-xrs 16637 df-qtop 16642 df-imas 16643 df-xps 16645 df-mre 16727 df-mrc 16728 df-acs 16730 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-subg 18072 df-ghm 18139 df-cntz 18230 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-cring 19035 df-oppr 19108 df-dvdsr 19126 df-unit 19127 df-invr 19157 df-dvr 19168 df-rnghom 19202 df-drng 19239 df-field 19240 df-subrg 19268 df-abv 19322 df-staf 19350 df-srng 19351 df-lmod 19370 df-lss 19438 df-lmhm 19528 df-lvec 19609 df-sra 19678 df-rgmod 19679 df-psmet 20254 df-xmet 20255 df-met 20256 df-bl 20257 df-mopn 20258 df-cnfld 20263 df-refld 20466 df-phl 20487 df-dsmm 20593 df-frlm 20608 df-top 21221 df-topon 21238 df-topsp 21260 df-bases 21273 df-cn 21554 df-cnp 21555 df-cmp 21714 df-tx 21889 df-hmeo 22082 df-xms 22648 df-ms 22649 df-tms 22650 df-nm 22910 df-ngp 22911 df-tng 22912 df-nrg 22913 df-nlm 22914 df-cncf 23204 df-clm 23385 df-cph 23490 df-tcph 23491 df-rrx 23706 df-ovol 23783 df-vol 23784 df-salg 42060 df-sumge0 42111 df-mea 42198 df-ome 42238 df-caragen 42240 df-ovoln 42285 df-voln 42287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |