| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0ioo2 | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| vonn0ioo2.k | ⊢ Ⅎ𝑘𝜑 |
| vonn0ioo2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| vonn0ioo2.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| vonn0ioo2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| vonn0ioo2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| vonn0ioo2.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) |
| Ref | Expression |
|---|---|
| vonn0ioo2 | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vonn0ioo2.i | . . . . 5 ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
| 3 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
| 4 | vonn0ioo2.k | . . . . . . . . . . 11 ⊢ Ⅎ𝑘𝜑 | |
| 5 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑋 | |
| 6 | 4, 5 | nfan 1899 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) |
| 7 | nfcsb1v 3877 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 | |
| 8 | nfcv 2891 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘ℝ | |
| 9 | 7, 8 | nfel 2906 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ |
| 10 | 6, 9 | nfim 1896 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 11 | eleq1w 2811 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) | |
| 12 | 11 | anbi2d 630 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) |
| 13 | csbeq1a 3867 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
| 14 | 13 | eleq1d 2813 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) |
| 15 | 12, 14 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) |
| 16 | vonn0ioo2.a | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
| 17 | 10, 15, 16 | chvarfv 2241 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 18 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) | |
| 19 | 18 | fvmpts 6937 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 20 | 3, 17, 19 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 21 | nfcsb1v 3877 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 22 | 21, 8 | nfel 2906 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
| 23 | 6, 22 | nfim 1896 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 24 | csbeq1a 3867 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 25 | 24 | eleq1d 2813 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
| 26 | 12, 25 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
| 27 | vonn0ioo2.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
| 28 | 23, 26, 27 | chvarfv 2241 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 29 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) | |
| 30 | 29 | fvmpts 6937 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 31 | 3, 28, 30 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 32 | 20, 31 | oveq12d 7371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
| 33 | 32 | ixpeq2dva 8846 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
| 34 | nfcv 2891 | . . . . . . . 8 ⊢ Ⅎ𝑘(,) | |
| 35 | 7, 34, 21 | nfov 7383 | . . . . . . 7 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) |
| 36 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑗(𝐴(,)𝐵) | |
| 37 | 13 | equcoms 2020 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) |
| 38 | 37 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) |
| 39 | eqidd 2730 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐴 = 𝐴) | |
| 40 | 38, 39 | eqtrd 2764 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) |
| 41 | 24 | equcoms 2020 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
| 42 | 41 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) |
| 43 | 40, 42 | oveq12d 7371 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = (𝐴(,)𝐵)) |
| 44 | 35, 36, 43 | cbvixp 8848 | . . . . . 6 ⊢ X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) |
| 45 | 44 | a1i 11 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
| 46 | 33, 45 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
| 47 | 2, 46 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → 𝐼 = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) |
| 48 | 47 | fveq2d 6830 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
| 49 | vonn0ioo2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 50 | vonn0ioo2.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 51 | 4, 16, 18 | fmptdf 7055 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
| 52 | 4, 27, 29 | fmptdf 7055 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
| 53 | eqid 2729 | . . 3 ⊢ X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) | |
| 54 | 49, 50, 51, 52, 53 | vonn0ioo 46669 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
| 55 | 20, 31 | oveq12d 7371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
| 56 | 55 | fveq2d 6830 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵))) |
| 57 | 17, 28 | voliooico 45974 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵))) |
| 58 | 57 | eqcomd 2735 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
| 59 | 56, 58 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
| 60 | 59 | prodeq2dv 15847 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
| 61 | 43 | fveq2d 6830 | . . . . 5 ⊢ (𝑗 = 𝑘 → (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(𝐴(,)𝐵))) |
| 62 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑘𝑋 | |
| 63 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑗𝑋 | |
| 64 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑘vol | |
| 65 | 64, 35 | nffv 6836 | . . . . 5 ⊢ Ⅎ𝑘(vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
| 66 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑗(vol‘(𝐴(,)𝐵)) | |
| 67 | 61, 62, 63, 65, 66 | cbvprod 15838 | . . . 4 ⊢ ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵)) |
| 68 | 67 | a1i 11 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
| 69 | 60, 68 | eqtrd 2764 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
| 70 | 48, 54, 69 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ⦋csb 3853 ∅c0 4286 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 Xcixp 8831 Fincfn 8879 ℝcr 11027 (,)cioo 13266 [,)cico 13268 ∏cprod 15828 volcvol 25380 volncvoln 46520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 df-prod 15829 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-pws 17371 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-field 20635 df-abv 20712 df-staf 20742 df-srng 20743 df-lmod 20783 df-lss 20853 df-lmhm 20944 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-refld 21530 df-phl 21551 df-dsmm 21657 df-frlm 21672 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cn 23130 df-cnp 23131 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 df-nm 24486 df-ngp 24487 df-tng 24488 df-nrg 24489 df-nlm 24490 df-cncf 24787 df-clm 24979 df-cph 25084 df-tcph 25085 df-rrx 25301 df-ovol 25381 df-vol 25382 df-salg 46291 df-sumge0 46345 df-mea 46432 df-ome 46472 df-caragen 46474 df-ovoln 46519 df-voln 46521 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |