Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonn0ioo2 Structured version   Visualization version   GIF version

Theorem vonn0ioo2 44921
Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonn0ioo2.k 𝑘𝜑
vonn0ioo2.x (𝜑𝑋 ∈ Fin)
vonn0ioo2.n (𝜑𝑋 ≠ ∅)
vonn0ioo2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonn0ioo2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
vonn0ioo2.i 𝐼 = X𝑘𝑋 (𝐴(,)𝐵)
Assertion
Ref Expression
vonn0ioo2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem vonn0ioo2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vonn0ioo2.i . . . . 5 𝐼 = X𝑘𝑋 (𝐴(,)𝐵)
21a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 (𝐴(,)𝐵))
3 simpr 485 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗𝑋)
4 vonn0ioo2.k . . . . . . . . . . 11 𝑘𝜑
5 nfv 1917 . . . . . . . . . . 11 𝑘 𝑗𝑋
64, 5nfan 1902 . . . . . . . . . 10 𝑘(𝜑𝑗𝑋)
7 nfcsb1v 3880 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐴
8 nfcv 2907 . . . . . . . . . . 11 𝑘
97, 8nfel 2921 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
106, 9nfim 1899 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
11 eleq1w 2820 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
1211anbi2d 629 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
13 csbeq1a 3869 . . . . . . . . . . 11 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1413eleq1d 2822 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1512, 14imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
16 vonn0ioo2.a . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1710, 15, 16chvarfv 2233 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
18 eqid 2736 . . . . . . . . 9 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1918fvmpts 6951 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
203, 17, 19syl2anc 584 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
21 nfcsb1v 3880 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
2221, 8nfel 2921 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
236, 22nfim 1899 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3869 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2822 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2612, 25imbi12d 344 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 vonn0ioo2.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvarfv 2233 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2736 . . . . . . . . 9 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3029fvmpts 6951 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
313, 28, 30syl2anc 584 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 7375 . . . . . 6 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵))
3332ixpeq2dva 8850 . . . . 5 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵))
34 nfcv 2907 . . . . . . . 8 𝑘(,)
357, 34, 21nfov 7387 . . . . . . 7 𝑘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)
36 nfcv 2907 . . . . . . 7 𝑗(𝐴(,)𝐵)
3713equcoms 2023 . . . . . . . . . 10 (𝑗 = 𝑘𝐴 = 𝑗 / 𝑘𝐴)
3837eqcomd 2742 . . . . . . . . 9 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
39 eqidd 2737 . . . . . . . . 9 (𝑗 = 𝑘𝐴 = 𝐴)
4038, 39eqtrd 2776 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
4124equcoms 2023 . . . . . . . . 9 (𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵)
4241eqcomd 2742 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵)
4340, 42oveq12d 7375 . . . . . . 7 (𝑗 = 𝑘 → (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵) = (𝐴(,)𝐵))
4435, 36, 43cbvixp 8852 . . . . . 6 X𝑗𝑋 (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴(,)𝐵)
4544a1i 11 . . . . 5 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
4633, 45eqtrd 2776 . . . 4 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)) = X𝑘𝑋 (𝐴(,)𝐵))
472, 46eqtr4d 2779 . . 3 (𝜑𝐼 = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)))
4847fveq2d 6846 . 2 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗))))
49 vonn0ioo2.x . . 3 (𝜑𝑋 ∈ Fin)
50 vonn0ioo2.n . . 3 (𝜑𝑋 ≠ ∅)
514, 16, 18fmptdf 7065 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
524, 27, 29fmptdf 7065 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
53 eqid 2736 . . 3 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗))
5449, 50, 51, 52, 53vonn0ioo 44918 . 2 (𝜑 → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
5520, 31oveq12d 7375 . . . . . 6 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5655fveq2d 6846 . . . . 5 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = (vol‘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)))
5717, 28voliooico 44223 . . . . . 6 ((𝜑𝑗𝑋) → (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)) = (vol‘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)))
5857eqcomd 2742 . . . . 5 ((𝜑𝑗𝑋) → (vol‘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)) = (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)))
5956, 58eqtrd 2776 . . . 4 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)))
6059prodeq2dv 15806 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)))
6143fveq2d 6846 . . . . 5 (𝑗 = 𝑘 → (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)) = (vol‘(𝐴(,)𝐵)))
62 nfcv 2907 . . . . 5 𝑘𝑋
63 nfcv 2907 . . . . 5 𝑗𝑋
64 nfcv 2907 . . . . . 6 𝑘vol
6564, 35nffv 6852 . . . . 5 𝑘(vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵))
66 nfcv 2907 . . . . 5 𝑗(vol‘(𝐴(,)𝐵))
6761, 62, 63, 65, 66cbvprod 15798 . . . 4 𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵))
6867a1i 11 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵)))
6960, 68eqtrd 2776 . 2 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵)))
7048, 54, 693eqtrd 2780 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wne 2943  csb 3855  c0 4282  cmpt 5188  cfv 6496  (class class class)co 7357  Xcixp 8835  Fincfn 8883  cr 11050  (,)cioo 13264  [,)cico 13266  cprod 15788  volcvol 24827  volncvoln 44769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-pws 17331  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-abv 20276  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-lmhm 20483  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-refld 21009  df-phl 21030  df-dsmm 21138  df-frlm 21153  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-nm 23938  df-ngp 23939  df-tng 23940  df-nrg 23941  df-nlm 23942  df-cncf 24241  df-clm 24426  df-cph 24532  df-tcph 24533  df-rrx 24749  df-ovol 24828  df-vol 24829  df-salg 44540  df-sumge0 44594  df-mea 44681  df-ome 44721  df-caragen 44723  df-ovoln 44768  df-voln 44770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator