| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0ioo2 | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| vonn0ioo2.k | ⊢ Ⅎ𝑘𝜑 |
| vonn0ioo2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| vonn0ioo2.n | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| vonn0ioo2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) |
| vonn0ioo2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) |
| vonn0ioo2.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) |
| Ref | Expression |
|---|---|
| vonn0ioo2 | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vonn0ioo2.i | . . . . 5 ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
| 3 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
| 4 | vonn0ioo2.k | . . . . . . . . . . 11 ⊢ Ⅎ𝑘𝜑 | |
| 5 | nfv 1914 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑋 | |
| 6 | 4, 5 | nfan 1899 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) |
| 7 | nfcsb1v 3889 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 | |
| 8 | nfcv 2892 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘ℝ | |
| 9 | 7, 8 | nfel 2907 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ |
| 10 | 6, 9 | nfim 1896 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 11 | eleq1w 2812 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) | |
| 12 | 11 | anbi2d 630 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) |
| 13 | csbeq1a 3879 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
| 14 | 13 | eleq1d 2814 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) |
| 15 | 12, 14 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) |
| 16 | vonn0ioo2.a | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
| 17 | 10, 15, 16 | chvarfv 2241 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) |
| 18 | eqid 2730 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) | |
| 19 | 18 | fvmpts 6974 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 20 | 3, 17, 19 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) |
| 21 | nfcsb1v 3889 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 22 | 21, 8 | nfel 2907 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ |
| 23 | 6, 22 | nfim 1896 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 24 | csbeq1a 3879 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 25 | 24 | eleq1d 2814 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) |
| 26 | 12, 25 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) |
| 27 | vonn0ioo2.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
| 28 | 23, 26, 27 | chvarfv 2241 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) |
| 29 | eqid 2730 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) | |
| 30 | 29 | fvmpts 6974 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 31 | 3, 28, 30 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) |
| 32 | 20, 31 | oveq12d 7408 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
| 33 | 32 | ixpeq2dva 8888 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
| 34 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑘(,) | |
| 35 | 7, 34, 21 | nfov 7420 | . . . . . . 7 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) |
| 36 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑗(𝐴(,)𝐵) | |
| 37 | 13 | equcoms 2020 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) |
| 38 | 37 | eqcomd 2736 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) |
| 39 | eqidd 2731 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐴 = 𝐴) | |
| 40 | 38, 39 | eqtrd 2765 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) |
| 41 | 24 | equcoms 2020 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) |
| 42 | 41 | eqcomd 2736 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) |
| 43 | 40, 42 | oveq12d 7408 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = (𝐴(,)𝐵)) |
| 44 | 35, 36, 43 | cbvixp 8890 | . . . . . 6 ⊢ X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) |
| 45 | 44 | a1i 11 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
| 46 | 33, 45 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) |
| 47 | 2, 46 | eqtr4d 2768 | . . 3 ⊢ (𝜑 → 𝐼 = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) |
| 48 | 47 | fveq2d 6865 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
| 49 | vonn0ioo2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 50 | vonn0ioo2.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 51 | 4, 16, 18 | fmptdf 7092 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) |
| 52 | 4, 27, 29 | fmptdf 7092 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) |
| 53 | eqid 2730 | . . 3 ⊢ X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) | |
| 54 | 49, 50, 51, 52, 53 | vonn0ioo 46692 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) |
| 55 | 20, 31 | oveq12d 7408 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) |
| 56 | 55 | fveq2d 6865 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵))) |
| 57 | 17, 28 | voliooico 45997 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵))) |
| 58 | 57 | eqcomd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
| 59 | 56, 58 | eqtrd 2765 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
| 60 | 59 | prodeq2dv 15895 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) |
| 61 | 43 | fveq2d 6865 | . . . . 5 ⊢ (𝑗 = 𝑘 → (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(𝐴(,)𝐵))) |
| 62 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑘𝑋 | |
| 63 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑗𝑋 | |
| 64 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘vol | |
| 65 | 64, 35 | nffv 6871 | . . . . 5 ⊢ Ⅎ𝑘(vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) |
| 66 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑗(vol‘(𝐴(,)𝐵)) | |
| 67 | 61, 62, 63, 65, 66 | cbvprod 15886 | . . . 4 ⊢ ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵)) |
| 68 | 67 | a1i 11 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
| 69 | 60, 68 | eqtrd 2765 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
| 70 | 48, 54, 69 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2926 ⦋csb 3865 ∅c0 4299 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Xcixp 8873 Fincfn 8921 ℝcr 11074 (,)cioo 13313 [,)cico 13315 ∏cprod 15876 volcvol 25371 volncvoln 46543 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-prod 15877 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-pws 17419 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-drng 20647 df-field 20648 df-abv 20725 df-staf 20755 df-srng 20756 df-lmod 20775 df-lss 20845 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-refld 21521 df-phl 21542 df-dsmm 21648 df-frlm 21663 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cn 23121 df-cnp 23122 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 df-nm 24477 df-ngp 24478 df-tng 24479 df-nrg 24480 df-nlm 24481 df-cncf 24778 df-clm 24970 df-cph 25075 df-tcph 25076 df-rrx 25292 df-ovol 25372 df-vol 25373 df-salg 46314 df-sumge0 46368 df-mea 46455 df-ome 46495 df-caragen 46497 df-ovoln 46542 df-voln 46544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |