Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonn0ioo2 Structured version   Visualization version   GIF version

Theorem vonn0ioo2 41544
Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonn0ioo2.k 𝑘𝜑
vonn0ioo2.x (𝜑𝑋 ∈ Fin)
vonn0ioo2.n (𝜑𝑋 ≠ ∅)
vonn0ioo2.a ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
vonn0ioo2.b ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
vonn0ioo2.i 𝐼 = X𝑘𝑋 (𝐴(,)𝐵)
Assertion
Ref Expression
vonn0ioo2 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵)))
Distinct variable group:   𝑘,𝑋
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐼(𝑘)

Proof of Theorem vonn0ioo2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 vonn0ioo2.i . . . . 5 𝐼 = X𝑘𝑋 (𝐴(,)𝐵)
21a1i 11 . . . 4 (𝜑𝐼 = X𝑘𝑋 (𝐴(,)𝐵))
3 simpr 477 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗𝑋)
4 vonn0ioo2.k . . . . . . . . . . 11 𝑘𝜑
5 nfv 2009 . . . . . . . . . . 11 𝑘 𝑗𝑋
64, 5nfan 1998 . . . . . . . . . 10 𝑘(𝜑𝑗𝑋)
7 nfcsb1v 3707 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐴
8 nfcv 2907 . . . . . . . . . . 11 𝑘
97, 8nfel 2920 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐴 ∈ ℝ
106, 9nfim 1995 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
11 eleq1w 2827 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝑋𝑗𝑋))
1211anbi2d 622 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝜑𝑘𝑋) ↔ (𝜑𝑗𝑋)))
13 csbeq1a 3700 . . . . . . . . . . 11 (𝑘 = 𝑗𝐴 = 𝑗 / 𝑘𝐴)
1413eleq1d 2829 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ 𝑗 / 𝑘𝐴 ∈ ℝ))
1512, 14imbi12d 335 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)))
16 vonn0ioo2.a . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐴 ∈ ℝ)
1710, 15, 16chvar 2368 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐴 ∈ ℝ)
18 eqid 2765 . . . . . . . . 9 (𝑘𝑋𝐴) = (𝑘𝑋𝐴)
1918fvmpts 6474 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐴 ∈ ℝ) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
203, 17, 19syl2anc 579 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐴)‘𝑗) = 𝑗 / 𝑘𝐴)
21 nfcsb1v 3707 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
2221, 8nfel 2920 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℝ
236, 22nfim 1995 . . . . . . . . 9 𝑘((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
24 csbeq1a 3700 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
2524eleq1d 2829 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝑗 / 𝑘𝐵 ∈ ℝ))
2612, 25imbi12d 335 . . . . . . . . 9 (𝑘 = 𝑗 → (((𝜑𝑘𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)))
27 vonn0ioo2.b . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝐵 ∈ ℝ)
2823, 26, 27chvar 2368 . . . . . . . 8 ((𝜑𝑗𝑋) → 𝑗 / 𝑘𝐵 ∈ ℝ)
29 eqid 2765 . . . . . . . . 9 (𝑘𝑋𝐵) = (𝑘𝑋𝐵)
3029fvmpts 6474 . . . . . . . 8 ((𝑗𝑋𝑗 / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
313, 28, 30syl2anc 579 . . . . . . 7 ((𝜑𝑗𝑋) → ((𝑘𝑋𝐵)‘𝑗) = 𝑗 / 𝑘𝐵)
3220, 31oveq12d 6860 . . . . . 6 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵))
3332ixpeq2dva 8128 . . . . 5 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵))
34 nfcv 2907 . . . . . . . 8 𝑘(,)
357, 34, 21nfov 6872 . . . . . . 7 𝑘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)
36 nfcv 2907 . . . . . . 7 𝑗(𝐴(,)𝐵)
3713equcoms 2117 . . . . . . . . . 10 (𝑗 = 𝑘𝐴 = 𝑗 / 𝑘𝐴)
3837eqcomd 2771 . . . . . . . . 9 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
39 eqidd 2766 . . . . . . . . 9 (𝑗 = 𝑘𝐴 = 𝐴)
4038, 39eqtrd 2799 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐴 = 𝐴)
4124equcoms 2117 . . . . . . . . 9 (𝑗 = 𝑘𝐵 = 𝑗 / 𝑘𝐵)
4241eqcomd 2771 . . . . . . . 8 (𝑗 = 𝑘𝑗 / 𝑘𝐵 = 𝐵)
4340, 42oveq12d 6860 . . . . . . 7 (𝑗 = 𝑘 → (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵) = (𝐴(,)𝐵))
4435, 36, 43cbvixp 8130 . . . . . 6 X𝑗𝑋 (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴(,)𝐵)
4544a1i 11 . . . . 5 (𝜑X𝑗𝑋 (𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵) = X𝑘𝑋 (𝐴(,)𝐵))
4633, 45eqtrd 2799 . . . 4 (𝜑X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)) = X𝑘𝑋 (𝐴(,)𝐵))
472, 46eqtr4d 2802 . . 3 (𝜑𝐼 = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)))
4847fveq2d 6379 . 2 (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗))))
49 vonn0ioo2.x . . 3 (𝜑𝑋 ∈ Fin)
50 vonn0ioo2.n . . 3 (𝜑𝑋 ≠ ∅)
514, 16, 18fmptdf 6577 . . 3 (𝜑 → (𝑘𝑋𝐴):𝑋⟶ℝ)
524, 27, 29fmptdf 6577 . . 3 (𝜑 → (𝑘𝑋𝐵):𝑋⟶ℝ)
53 eqid 2765 . . 3 X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗)) = X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗))
5449, 50, 51, 52, 53vonn0ioo 41541 . 2 (𝜑 → ((voln‘𝑋)‘X𝑗𝑋 (((𝑘𝑋𝐴)‘𝑗)(,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))))
5520, 31oveq12d 6860 . . . . . 6 ((𝜑𝑗𝑋) → (((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗)) = (𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵))
5655fveq2d 6379 . . . . 5 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = (vol‘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)))
5717, 28voliooico 40846 . . . . . 6 ((𝜑𝑗𝑋) → (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)) = (vol‘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)))
5857eqcomd 2771 . . . . 5 ((𝜑𝑗𝑋) → (vol‘(𝑗 / 𝑘𝐴[,)𝑗 / 𝑘𝐵)) = (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)))
5956, 58eqtrd 2799 . . . 4 ((𝜑𝑗𝑋) → (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)))
6059prodeq2dv 14936 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)))
6143fveq2d 6379 . . . . 5 (𝑗 = 𝑘 → (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)) = (vol‘(𝐴(,)𝐵)))
62 nfcv 2907 . . . . 5 𝑘𝑋
63 nfcv 2907 . . . . 5 𝑗𝑋
64 nfcv 2907 . . . . . 6 𝑘vol
6564, 35nffv 6385 . . . . 5 𝑘(vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵))
66 nfcv 2907 . . . . 5 𝑗(vol‘(𝐴(,)𝐵))
6761, 62, 63, 65, 66cbvprod 14928 . . . 4 𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵))
6867a1i 11 . . 3 (𝜑 → ∏𝑗𝑋 (vol‘(𝑗 / 𝑘𝐴(,)𝑗 / 𝑘𝐵)) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵)))
6960, 68eqtrd 2799 . 2 (𝜑 → ∏𝑗𝑋 (vol‘(((𝑘𝑋𝐴)‘𝑗)[,)((𝑘𝑋𝐵)‘𝑗))) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵)))
7048, 54, 693eqtrd 2803 1 (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 (vol‘(𝐴(,)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wnf 1878  wcel 2155  wne 2937  csb 3691  c0 4079  cmpt 4888  cfv 6068  (class class class)co 6842  Xcixp 8113  Fincfn 8160  cr 10188  (,)cioo 12377  [,)cico 12379  cprod 14918  volcvol 23521  volncvoln 41392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-ac2 9538  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-ac 9190  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-rlim 14505  df-sum 14702  df-prod 14919  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-pws 16376  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-mhm 17601  df-submnd 17602  df-grp 17692  df-minusg 17693  df-sbg 17694  df-mulg 17808  df-subg 17855  df-ghm 17922  df-cntz 18013  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-rnghom 18984  df-drng 19018  df-field 19019  df-subrg 19047  df-abv 19086  df-staf 19114  df-srng 19115  df-lmod 19134  df-lss 19202  df-lmhm 19294  df-lvec 19375  df-sra 19446  df-rgmod 19447  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-cnfld 20020  df-refld 20225  df-phl 20246  df-dsmm 20352  df-frlm 20367  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cn 21311  df-cnp 21312  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-xms 22404  df-ms 22405  df-tms 22406  df-nm 22666  df-ngp 22667  df-tng 22668  df-nrg 22669  df-nlm 22670  df-cncf 22960  df-clm 23141  df-cph 23246  df-tcph 23247  df-rrx 23462  df-ovol 23522  df-vol 23523  df-salg 41166  df-sumge0 41217  df-mea 41304  df-ome 41344  df-caragen 41346  df-ovoln 41391  df-voln 41393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator