|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonn0ioo2 | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Lebesgue measure of an open interval when the dimension of the space is nonzero. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| vonn0ioo2.k | ⊢ Ⅎ𝑘𝜑 | 
| vonn0ioo2.x | ⊢ (𝜑 → 𝑋 ∈ Fin) | 
| vonn0ioo2.n | ⊢ (𝜑 → 𝑋 ≠ ∅) | 
| vonn0ioo2.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | 
| vonn0ioo2.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | 
| vonn0ioo2.i | ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) | 
| Ref | Expression | 
|---|---|
| vonn0ioo2 | ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vonn0ioo2.i | . . . . 5 ⊢ 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) | 
| 3 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → 𝑗 ∈ 𝑋) | |
| 4 | vonn0ioo2.k | . . . . . . . . . . 11 ⊢ Ⅎ𝑘𝜑 | |
| 5 | nfv 1913 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑋 | |
| 6 | 4, 5 | nfan 1898 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋) | 
| 7 | nfcsb1v 3922 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 | |
| 8 | nfcv 2904 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘ℝ | |
| 9 | 7, 8 | nfel 2919 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ | 
| 10 | 6, 9 | nfim 1895 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) | 
| 11 | eleq1w 2823 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑋 ↔ 𝑗 ∈ 𝑋)) | |
| 12 | 11 | anbi2d 630 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝑋))) | 
| 13 | csbeq1a 3912 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | |
| 14 | 13 | eleq1d 2825 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐴 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ)) | 
| 15 | 12, 14 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ))) | 
| 16 | vonn0ioo2.a | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐴 ∈ ℝ) | |
| 17 | 10, 15, 16 | chvarfv 2239 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) | 
| 18 | eqid 2736 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐴) = (𝑘 ∈ 𝑋 ↦ 𝐴) | |
| 19 | 18 | fvmpts 7018 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐴 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) | 
| 20 | 3, 17, 19 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐴) | 
| 21 | nfcsb1v 3922 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
| 22 | 21, 8 | nfel 2919 | . . . . . . . . . 10 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ | 
| 23 | 6, 22 | nfim 1895 | . . . . . . . . 9 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) | 
| 24 | csbeq1a 3912 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
| 25 | 24 | eleq1d 2825 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ)) | 
| 26 | 12, 25 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ))) | 
| 27 | vonn0ioo2.b | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝐵 ∈ ℝ) | |
| 28 | 23, 26, 27 | chvarfv 2239 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) | 
| 29 | eqid 2736 | . . . . . . . . 9 ⊢ (𝑘 ∈ 𝑋 ↦ 𝐵) = (𝑘 ∈ 𝑋 ↦ 𝐵) | |
| 30 | 29 | fvmpts 7018 | . . . . . . . 8 ⊢ ((𝑗 ∈ 𝑋 ∧ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℝ) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) | 
| 31 | 3, 28, 30 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗) = ⦋𝑗 / 𝑘⦌𝐵) | 
| 32 | 20, 31 | oveq12d 7450 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) | 
| 33 | 32 | ixpeq2dva 8953 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) | 
| 34 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑘(,) | |
| 35 | 7, 34, 21 | nfov 7462 | . . . . . . 7 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) | 
| 36 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑗(𝐴(,)𝐵) | |
| 37 | 13 | equcoms 2018 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → 𝐴 = ⦋𝑗 / 𝑘⦌𝐴) | 
| 38 | 37 | eqcomd 2742 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) | 
| 39 | eqidd 2737 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐴 = 𝐴) | |
| 40 | 38, 39 | eqtrd 2776 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐴 = 𝐴) | 
| 41 | 24 | equcoms 2018 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | 
| 42 | 41 | eqcomd 2742 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) | 
| 43 | 40, 42 | oveq12d 7450 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = (𝐴(,)𝐵)) | 
| 44 | 35, 36, 43 | cbvixp 8955 | . . . . . 6 ⊢ X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵) | 
| 45 | 44 | a1i 11 | . . . . 5 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) | 
| 46 | 33, 45 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑘 ∈ 𝑋 (𝐴(,)𝐵)) | 
| 47 | 2, 46 | eqtr4d 2779 | . . 3 ⊢ (𝜑 → 𝐼 = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) | 
| 48 | 47 | fveq2d 6909 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) | 
| 49 | vonn0ioo2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 50 | vonn0ioo2.n | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 51 | 4, 16, 18 | fmptdf 7136 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℝ) | 
| 52 | 4, 27, 29 | fmptdf 7136 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℝ) | 
| 53 | eqid 2736 | . . 3 ⊢ X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) | |
| 54 | 49, 50, 51, 52, 53 | vonn0ioo 46707 | . 2 ⊢ (𝜑 → ((voln‘𝑋)‘X𝑗 ∈ 𝑋 (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)(,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)))) | 
| 55 | 20, 31 | oveq12d 7450 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗)) = (⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) | 
| 56 | 55 | fveq2d 6909 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵))) | 
| 57 | 17, 28 | voliooico 46012 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵))) | 
| 58 | 57 | eqcomd 2742 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(⦋𝑗 / 𝑘⦌𝐴[,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) | 
| 59 | 56, 58 | eqtrd 2776 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) | 
| 60 | 59 | prodeq2dv 15959 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵))) | 
| 61 | 43 | fveq2d 6909 | . . . . 5 ⊢ (𝑗 = 𝑘 → (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = (vol‘(𝐴(,)𝐵))) | 
| 62 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑘𝑋 | |
| 63 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑗𝑋 | |
| 64 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘vol | |
| 65 | 64, 35 | nffv 6915 | . . . . 5 ⊢ Ⅎ𝑘(vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) | 
| 66 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑗(vol‘(𝐴(,)𝐵)) | |
| 67 | 61, 62, 63, 65, 66 | cbvprod 15950 | . . . 4 ⊢ ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵)) | 
| 68 | 67 | a1i 11 | . . 3 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(⦋𝑗 / 𝑘⦌𝐴(,)⦋𝑗 / 𝑘⦌𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) | 
| 69 | 60, 68 | eqtrd 2776 | . 2 ⊢ (𝜑 → ∏𝑗 ∈ 𝑋 (vol‘(((𝑘 ∈ 𝑋 ↦ 𝐴)‘𝑗)[,)((𝑘 ∈ 𝑋 ↦ 𝐵)‘𝑗))) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) | 
| 70 | 48, 54, 69 | 3eqtrd 2780 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 (vol‘(𝐴(,)𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ≠ wne 2939 ⦋csb 3898 ∅c0 4332 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 Xcixp 8938 Fincfn 8986 ℝcr 11155 (,)cioo 13388 [,)cico 13390 ∏cprod 15940 volcvol 25499 volncvoln 46558 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cc 10476 ax-ac2 10504 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 ax-mulf 11236 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-disj 5110 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-acn 9983 df-ac 10157 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-sum 15724 df-prod 15941 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-pws 17495 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-cring 20234 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-dvr 20402 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-drng 20732 df-field 20733 df-abv 20811 df-staf 20841 df-srng 20842 df-lmod 20861 df-lss 20931 df-lmhm 21022 df-lvec 21103 df-sra 21173 df-rgmod 21174 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-cnfld 21366 df-refld 21624 df-phl 21645 df-dsmm 21753 df-frlm 21768 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cn 23236 df-cnp 23237 df-cmp 23396 df-tx 23571 df-hmeo 23764 df-xms 24331 df-ms 24332 df-tms 24333 df-nm 24596 df-ngp 24597 df-tng 24598 df-nrg 24599 df-nlm 24600 df-cncf 24905 df-clm 25097 df-cph 25203 df-tcph 25204 df-rrx 25420 df-ovol 25500 df-vol 25501 df-salg 46329 df-sumge0 46383 df-mea 46470 df-ome 46510 df-caragen 46512 df-ovoln 46557 df-voln 46559 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |