| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpssmap2g | Structured version Visualization version GIF version | ||
| Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8852 avoids ax-rep 5217. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| ixpssmap2g | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpf 8844 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
| 3 | n0i 4290 | . . . . . 6 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ¬ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
| 4 | ixpprc 8843 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | |
| 5 | 3, 4 | nsyl2 141 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
| 6 | elmapg 8763 | . . . . 5 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) | |
| 7 | 5, 6 | sylan2 593 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) |
| 8 | 2, 7 | mpbird 257 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
| 9 | 8 | ex 412 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴))) |
| 10 | 9 | ssrdv 3940 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 ∪ ciun 4941 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ixp 8822 |
| This theorem is referenced by: ixpssmapg 8852 ixpfi 9233 ixpiunwdom 9476 prdsval 17356 prdsbas 17358 ixpssmapc 45109 |
| Copyright terms: Public domain | W3C validator |