Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpssmap2g | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8792 avoids ax-rep 5234. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
ixpssmap2g | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpf 8784 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | 1 | adantl 483 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
3 | n0i 4285 | . . . . . 6 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ¬ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
4 | ixpprc 8783 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | |
5 | 3, 4 | nsyl2 141 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
6 | elmapg 8704 | . . . . 5 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) | |
7 | 5, 6 | sylan2 594 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) |
8 | 2, 7 | mpbird 257 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
9 | 8 | ex 414 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴))) |
10 | 9 | ssrdv 3942 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ⊆ wss 3902 ∅c0 4274 ∪ ciun 4946 ⟶wf 6480 (class class class)co 7342 ↑m cmap 8691 Xcixp 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-map 8693 df-ixp 8762 |
This theorem is referenced by: ixpssmapg 8792 ixpfi 9219 ixpiunwdom 9452 prdsval 17264 prdsbas 17266 ixpssmapc 42992 |
Copyright terms: Public domain | W3C validator |