![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpssmap2g | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8922 avoids ax-rep 5286. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
ixpssmap2g | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpf 8914 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | 1 | adantl 483 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
3 | n0i 4334 | . . . . . 6 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ¬ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
4 | ixpprc 8913 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | |
5 | 3, 4 | nsyl2 141 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
6 | elmapg 8833 | . . . . 5 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) | |
7 | 5, 6 | sylan2 594 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) |
8 | 2, 7 | mpbird 257 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
9 | 8 | ex 414 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴))) |
10 | 9 | ssrdv 3989 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 ∅c0 4323 ∪ ciun 4998 ⟶wf 6540 (class class class)co 7409 ↑m cmap 8820 Xcixp 8891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-ixp 8892 |
This theorem is referenced by: ixpssmapg 8922 ixpfi 9349 ixpiunwdom 9585 prdsval 17401 prdsbas 17403 ixpssmapc 43761 |
Copyright terms: Public domain | W3C validator |