MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpssmap2g Structured version   Visualization version   GIF version

Theorem ixpssmap2g 8944
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8945 avoids ax-rep 5280. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
ixpssmap2g ( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmap2g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpf 8937 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓:𝐴 𝑥𝐴 𝐵)
21adantl 480 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓:𝐴 𝑥𝐴 𝐵)
3 n0i 4329 . . . . . 6 (𝑓X𝑥𝐴 𝐵 → ¬ X𝑥𝐴 𝐵 = ∅)
4 ixpprc 8936 . . . . . 6 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
53, 4nsyl2 141 . . . . 5 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
6 elmapg 8856 . . . . 5 (( 𝑥𝐴 𝐵𝑉𝐴 ∈ V) → (𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴) ↔ 𝑓:𝐴 𝑥𝐴 𝐵))
75, 6sylan2 591 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → (𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴) ↔ 𝑓:𝐴 𝑥𝐴 𝐵))
82, 7mpbird 256 . . 3 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴))
98ex 411 . 2 ( 𝑥𝐴 𝐵𝑉 → (𝑓X𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴)))
109ssrdv 3978 1 ( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  wss 3939  c0 4318   ciun 4991  wf 6539  (class class class)co 7416  m cmap 8843  Xcixp 8914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-map 8845  df-ixp 8915
This theorem is referenced by:  ixpssmapg  8945  ixpfi  9373  ixpiunwdom  9613  prdsval  17436  prdsbas  17438  ixpssmapc  44503
  Copyright terms: Public domain W3C validator