Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpssmap2g | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8674 avoids ax-rep 5205. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
ixpssmap2g | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpf 8666 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
3 | n0i 4264 | . . . . . 6 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → ¬ X𝑥 ∈ 𝐴 𝐵 = ∅) | |
4 | ixpprc 8665 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | |
5 | 3, 4 | nsyl2 141 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐴 ∈ V) |
6 | elmapg 8586 | . . . . 5 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) | |
7 | 5, 6 | sylan2 592 | . . . 4 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → (𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ↔ 𝑓:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵)) |
8 | 2, 7 | mpbird 256 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
9 | 8 | ex 412 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝑓 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴))) |
10 | 9 | ssrdv 3923 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ∪ ciun 4921 ⟶wf 6414 (class class class)co 7255 ↑m cmap 8573 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ixp 8644 |
This theorem is referenced by: ixpssmapg 8674 ixpfi 9046 ixpiunwdom 9279 prdsval 17083 prdsbas 17085 ixpssmapc 42511 |
Copyright terms: Public domain | W3C validator |