MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpssmap2g Structured version   Visualization version   GIF version

Theorem ixpssmap2g 8177
Description: An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8178 avoids ax-rep 4964. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
ixpssmap2g ( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmap2g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ixpf 8170 . . . . 5 (𝑓X𝑥𝐴 𝐵𝑓:𝐴 𝑥𝐴 𝐵)
21adantl 474 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓:𝐴 𝑥𝐴 𝐵)
3 n0i 4120 . . . . . 6 (𝑓X𝑥𝐴 𝐵 → ¬ X𝑥𝐴 𝐵 = ∅)
4 ixpprc 8169 . . . . . 6 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
53, 4nsyl2 145 . . . . 5 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
6 elmapg 8108 . . . . 5 (( 𝑥𝐴 𝐵𝑉𝐴 ∈ V) → (𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴) ↔ 𝑓:𝐴 𝑥𝐴 𝐵))
75, 6sylan2 587 . . . 4 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → (𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴) ↔ 𝑓:𝐴 𝑥𝐴 𝐵))
82, 7mpbird 249 . . 3 (( 𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴))
98ex 402 . 2 ( 𝑥𝐴 𝐵𝑉 → (𝑓X𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴)))
109ssrdv 3804 1 ( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  wss 3769  c0 4115   ciun 4710  wf 6097  (class class class)co 6878  𝑚 cmap 8095  Xcixp 8148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-map 8097  df-ixp 8149
This theorem is referenced by:  ixpssmapg  8178  ixpfi  8505  ixpiunwdom  8738  prdsval  16430  prdsbas  16432  ixpssmapc  40002
  Copyright terms: Public domain W3C validator