MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpf Structured version   Visualization version   GIF version

Theorem ixpf 8203
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
ixpf (𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpf
StepHypRef Expression
1 elixp2 8185 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssiun2 4785 . . . . . . 7 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
32sseld 3826 . . . . . 6 (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵 → (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
43ralimia 3159 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵)
54anim2i 610 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
6 nfcv 2969 . . . . 5 𝑥𝐴
7 nfiu1 4772 . . . . 5 𝑥 𝑥𝐴 𝐵
8 nfcv 2969 . . . . 5 𝑥𝐹
96, 7, 8ffnfvf 6643 . . . 4 (𝐹:𝐴 𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
105, 9sylibr 226 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴 𝑥𝐴 𝐵)
11103adant1 1164 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴 𝑥𝐴 𝐵)
121, 11sylbi 209 1 (𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111  wcel 2164  wral 3117  Vcvv 3414   ciun 4742   Fn wfn 6122  wf 6123  cfv 6127  Xcixp 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fv 6135  df-ixp 8182
This theorem is referenced by:  uniixp  8204  ixpssmap2g  8210  ioorrnopnlem  41313  iunhoiioolem  41681
  Copyright terms: Public domain W3C validator