| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpf | Structured version Visualization version GIF version | ||
| Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| ixpf | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elixp2 8831 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
| 2 | ssiun2 4998 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 3 | 2 | sseld 3929 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ 𝐵 → (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 4 | 3 | ralimia 3067 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 5 | 4 | anim2i 617 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 6 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 7 | nfiu1 4977 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
| 8 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 9 | 6, 7, 8 | ffnfvf 7059 | . . . 4 ⊢ (𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 10 | 5, 9 | sylibr 234 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
| 11 | 10 | 3adant1 1130 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
| 12 | 1, 11 | sylbi 217 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∪ ciun 4941 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 Xcixp 8827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ixp 8828 |
| This theorem is referenced by: uniixp 8851 ixpssmap2g 8857 ioorrnopnlem 46427 iunhoiioolem 46798 |
| Copyright terms: Public domain | W3C validator |