Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpf | Structured version Visualization version GIF version |
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
ixpf | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp2 8647 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | ssiun2 4973 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
3 | 2 | sseld 3916 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ 𝐵 → (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
4 | 3 | ralimia 3084 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
5 | 4 | anim2i 616 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
6 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
7 | nfiu1 4955 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
8 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
9 | 6, 7, 8 | ffnfvf 6975 | . . . 4 ⊢ (𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
10 | 5, 9 | sylibr 233 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
11 | 10 | 3adant1 1128 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 1, 11 | sylbi 216 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∪ ciun 4921 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ixp 8644 |
This theorem is referenced by: uniixp 8667 ixpssmap2g 8673 ioorrnopnlem 43735 iunhoiioolem 44103 |
Copyright terms: Public domain | W3C validator |