MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpf Structured version   Visualization version   GIF version

Theorem ixpf 8666
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
ixpf (𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpf
StepHypRef Expression
1 elixp2 8647 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssiun2 4973 . . . . . . 7 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
32sseld 3916 . . . . . 6 (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵 → (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
43ralimia 3084 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵)
54anim2i 616 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
6 nfcv 2906 . . . . 5 𝑥𝐴
7 nfiu1 4955 . . . . 5 𝑥 𝑥𝐴 𝐵
8 nfcv 2906 . . . . 5 𝑥𝐹
96, 7, 8ffnfvf 6975 . . . 4 (𝐹:𝐴 𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
105, 9sylibr 233 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴 𝑥𝐴 𝐵)
11103adant1 1128 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴 𝑥𝐴 𝐵)
121, 11sylbi 216 1 (𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wral 3063  Vcvv 3422   ciun 4921   Fn wfn 6413  wf 6414  cfv 6418  Xcixp 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ixp 8644
This theorem is referenced by:  uniixp  8667  ixpssmap2g  8673  ioorrnopnlem  43735  iunhoiioolem  44103
  Copyright terms: Public domain W3C validator