MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub0 Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub0 13349
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiub0 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚   𝑥,𝑀   𝑥,𝑅   𝑥,𝑉   𝑥,𝑍,𝑓,𝑚

Proof of Theorem fsuppmapnn0fiub0
StepHypRef Expression
1 fsuppmapnn0fiubex 13348 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
2 ssel2 3959 . . . . . . . . . . . . . 14 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
32ancoms 459 . . . . . . . . . . . . 13 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 ∈ (𝑅m0))
4 elmapfn 8418 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 Fn ℕ0)
65expcom 414 . . . . . . . . . . 11 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀𝑓 Fn ℕ0))
763ad2ant1 1125 . . . . . . . . . 10 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀𝑓 Fn ℕ0))
87adantr 481 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (𝑓𝑀𝑓 Fn ℕ0))
98imp 407 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑓 Fn ℕ0)
10 nn0ex 11891 . . . . . . . . 9 0 ∈ V
1110a1i 11 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ℕ0 ∈ V)
12 simpll3 1206 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑍𝑉)
13 suppvalfn 7826 . . . . . . . 8 ((𝑓 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
149, 11, 12, 13syl3anc 1363 . . . . . . 7 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
1514sseq1d 3995 . . . . . 6 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚)))
16 rabss 4045 . . . . . 6 ({𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)))
1715, 16syl6bb 288 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚))))
18 nne 3017 . . . . . . . . . 10 (¬ (𝑓𝑥) ≠ 𝑍 ↔ (𝑓𝑥) = 𝑍)
1918biimpi 217 . . . . . . . . 9 (¬ (𝑓𝑥) ≠ 𝑍 → (𝑓𝑥) = 𝑍)
20192a1d 26 . . . . . . . 8 (¬ (𝑓𝑥) ≠ 𝑍 → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
21 elfz2nn0 12986 . . . . . . . . 9 (𝑥 ∈ (0...𝑚) ↔ (𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚))
22 nn0re 11894 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
23 nn0re 11894 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
24 lenlt 10707 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
2522, 23, 24syl2an 595 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
26 pm2.21 123 . . . . . . . . . . . 12 𝑚 < 𝑥 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2725, 26syl6bi 254 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
28273impia 1109 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2928a1d 25 . . . . . . . . 9 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3021, 29sylbi 218 . . . . . . . 8 (𝑥 ∈ (0...𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3120, 30ja 187 . . . . . . 7 (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3231com12 32 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3332ralimdva 3174 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3417, 33sylbid 241 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3534ralimdva 3174 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3635reximdva 3271 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
371, 36syld 47 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  Vcvv 3492  wss 3933   class class class wbr 5057   Fn wfn 6343  cfv 6348  (class class class)co 7145   supp csupp 7819  m cmap 8395  Fincfn 8497   finSupp cfsupp 8821  cr 10524  0cc0 10525   < clt 10663  cle 10664  0cn0 11885  ...cfz 12880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881
This theorem is referenced by:  pmatcoe1fsupp  21237
  Copyright terms: Public domain W3C validator