MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub0 Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub0 13598
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiub0 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚   𝑥,𝑀   𝑥,𝑅   𝑥,𝑉   𝑥,𝑍,𝑓,𝑚

Proof of Theorem fsuppmapnn0fiub0
StepHypRef Expression
1 fsuppmapnn0fiubex 13597 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
2 ssel2 3912 . . . . . . . . . . . . . 14 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
32ancoms 462 . . . . . . . . . . . . 13 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 ∈ (𝑅m0))
4 elmapfn 8570 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 Fn ℕ0)
65expcom 417 . . . . . . . . . . 11 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀𝑓 Fn ℕ0))
763ad2ant1 1135 . . . . . . . . . 10 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀𝑓 Fn ℕ0))
87adantr 484 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (𝑓𝑀𝑓 Fn ℕ0))
98imp 410 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑓 Fn ℕ0)
10 nn0ex 12126 . . . . . . . . 9 0 ∈ V
1110a1i 11 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ℕ0 ∈ V)
12 simpll3 1216 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑍𝑉)
13 suppvalfn 7935 . . . . . . . 8 ((𝑓 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
149, 11, 12, 13syl3anc 1373 . . . . . . 7 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
1514sseq1d 3949 . . . . . 6 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚)))
16 rabss 4002 . . . . . 6 ({𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)))
1715, 16bitrdi 290 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚))))
18 nne 2947 . . . . . . . . . 10 (¬ (𝑓𝑥) ≠ 𝑍 ↔ (𝑓𝑥) = 𝑍)
1918biimpi 219 . . . . . . . . 9 (¬ (𝑓𝑥) ≠ 𝑍 → (𝑓𝑥) = 𝑍)
20192a1d 26 . . . . . . . 8 (¬ (𝑓𝑥) ≠ 𝑍 → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
21 elfz2nn0 13233 . . . . . . . . 9 (𝑥 ∈ (0...𝑚) ↔ (𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚))
22 nn0re 12129 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
23 nn0re 12129 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
24 lenlt 10941 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
2522, 23, 24syl2an 599 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
26 pm2.21 123 . . . . . . . . . . . 12 𝑚 < 𝑥 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2725, 26syl6bi 256 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
28273impia 1119 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2928a1d 25 . . . . . . . . 9 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3021, 29sylbi 220 . . . . . . . 8 (𝑥 ∈ (0...𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3120, 30ja 189 . . . . . . 7 (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3231com12 32 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3332ralimdva 3103 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3417, 33sylbid 243 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3534ralimdva 3103 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3635reximdva 3203 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
371, 36syld 47 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3423  wss 3883   class class class wbr 5070   Fn wfn 6396  cfv 6401  (class class class)co 7235   supp csupp 7927  m cmap 8532  Fincfn 8650   finSupp cfsupp 9015  cr 10758  0cc0 10759   < clt 10897  cle 10898  0cn0 12120  ...cfz 13125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-1cn 10817  ax-icn 10818  ax-addcl 10819  ax-addrcl 10820  ax-mulcl 10821  ax-mulrcl 10822  ax-mulcom 10823  ax-addass 10824  ax-mulass 10825  ax-distr 10826  ax-i2m1 10827  ax-1ne0 10828  ax-1rid 10829  ax-rnegex 10830  ax-rrecex 10831  ax-cnre 10832  ax-pre-lttri 10833  ax-pre-lttrn 10834  ax-pre-ltadd 10835  ax-pre-mulgt0 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-1st 7783  df-2nd 7784  df-supp 7928  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-er 8415  df-map 8534  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-fsupp 9016  df-sup 9088  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-sub 11094  df-neg 11095  df-nn 11861  df-n0 12121  df-z 12207  df-uz 12469  df-fz 13126
This theorem is referenced by:  pmatcoe1fsupp  21630
  Copyright terms: Public domain W3C validator