MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub0 Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub0 14016
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiub0 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚   𝑥,𝑀   𝑥,𝑅   𝑥,𝑉   𝑥,𝑍,𝑓,𝑚

Proof of Theorem fsuppmapnn0fiub0
StepHypRef Expression
1 fsuppmapnn0fiubex 14015 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
2 ssel2 3958 . . . . . . . . . . . . . 14 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
32ancoms 458 . . . . . . . . . . . . 13 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 ∈ (𝑅m0))
4 elmapfn 8884 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 Fn ℕ0)
65expcom 413 . . . . . . . . . . 11 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀𝑓 Fn ℕ0))
763ad2ant1 1133 . . . . . . . . . 10 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀𝑓 Fn ℕ0))
87adantr 480 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (𝑓𝑀𝑓 Fn ℕ0))
98imp 406 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑓 Fn ℕ0)
10 nn0ex 12512 . . . . . . . . 9 0 ∈ V
1110a1i 11 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ℕ0 ∈ V)
12 simpll3 1215 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑍𝑉)
13 suppvalfn 8172 . . . . . . . 8 ((𝑓 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
149, 11, 12, 13syl3anc 1373 . . . . . . 7 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
1514sseq1d 3995 . . . . . 6 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚)))
16 rabss 4052 . . . . . 6 ({𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)))
1715, 16bitrdi 287 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚))))
18 nne 2937 . . . . . . . . . 10 (¬ (𝑓𝑥) ≠ 𝑍 ↔ (𝑓𝑥) = 𝑍)
1918biimpi 216 . . . . . . . . 9 (¬ (𝑓𝑥) ≠ 𝑍 → (𝑓𝑥) = 𝑍)
20192a1d 26 . . . . . . . 8 (¬ (𝑓𝑥) ≠ 𝑍 → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
21 elfz2nn0 13640 . . . . . . . . 9 (𝑥 ∈ (0...𝑚) ↔ (𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚))
22 nn0re 12515 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
23 nn0re 12515 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
24 lenlt 11318 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
2522, 23, 24syl2an 596 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
26 pm2.21 123 . . . . . . . . . . . 12 𝑚 < 𝑥 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2725, 26biimtrdi 253 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
28273impia 1117 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2928a1d 25 . . . . . . . . 9 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3021, 29sylbi 217 . . . . . . . 8 (𝑥 ∈ (0...𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3120, 30ja 186 . . . . . . 7 (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3231com12 32 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3332ralimdva 3153 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3417, 33sylbid 240 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3534ralimdva 3153 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3635reximdva 3154 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
371, 36syld 47 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  wss 3931   class class class wbr 5124   Fn wfn 6531  cfv 6536  (class class class)co 7410   supp csupp 8164  m cmap 8845  Fincfn 8964   finSupp cfsupp 9378  cr 11133  0cc0 11134   < clt 11274  cle 11275  0cn0 12506  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530
This theorem is referenced by:  pmatcoe1fsupp  22644
  Copyright terms: Public domain W3C validator