MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub0 Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub0 14031
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiub0 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚   𝑥,𝑀   𝑥,𝑅   𝑥,𝑉   𝑥,𝑍,𝑓,𝑚

Proof of Theorem fsuppmapnn0fiub0
StepHypRef Expression
1 fsuppmapnn0fiubex 14030 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
2 ssel2 3990 . . . . . . . . . . . . . 14 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
32ancoms 458 . . . . . . . . . . . . 13 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 ∈ (𝑅m0))
4 elmapfn 8904 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 Fn ℕ0)
65expcom 413 . . . . . . . . . . 11 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀𝑓 Fn ℕ0))
763ad2ant1 1132 . . . . . . . . . 10 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀𝑓 Fn ℕ0))
87adantr 480 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (𝑓𝑀𝑓 Fn ℕ0))
98imp 406 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑓 Fn ℕ0)
10 nn0ex 12530 . . . . . . . . 9 0 ∈ V
1110a1i 11 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ℕ0 ∈ V)
12 simpll3 1213 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑍𝑉)
13 suppvalfn 8192 . . . . . . . 8 ((𝑓 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
149, 11, 12, 13syl3anc 1370 . . . . . . 7 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
1514sseq1d 4027 . . . . . 6 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚)))
16 rabss 4082 . . . . . 6 ({𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)))
1715, 16bitrdi 287 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚))))
18 nne 2942 . . . . . . . . . 10 (¬ (𝑓𝑥) ≠ 𝑍 ↔ (𝑓𝑥) = 𝑍)
1918biimpi 216 . . . . . . . . 9 (¬ (𝑓𝑥) ≠ 𝑍 → (𝑓𝑥) = 𝑍)
20192a1d 26 . . . . . . . 8 (¬ (𝑓𝑥) ≠ 𝑍 → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
21 elfz2nn0 13655 . . . . . . . . 9 (𝑥 ∈ (0...𝑚) ↔ (𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚))
22 nn0re 12533 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
23 nn0re 12533 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
24 lenlt 11337 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
2522, 23, 24syl2an 596 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
26 pm2.21 123 . . . . . . . . . . . 12 𝑚 < 𝑥 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2725, 26biimtrdi 253 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
28273impia 1116 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2928a1d 25 . . . . . . . . 9 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3021, 29sylbi 217 . . . . . . . 8 (𝑥 ∈ (0...𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3120, 30ja 186 . . . . . . 7 (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3231com12 32 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3332ralimdva 3165 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3417, 33sylbid 240 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3534ralimdva 3165 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3635reximdva 3166 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
371, 36syld 47 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  wss 3963   class class class wbr 5148   Fn wfn 6558  cfv 6563  (class class class)co 7431   supp csupp 8184  m cmap 8865  Fincfn 8984   finSupp cfsupp 9399  cr 11152  0cc0 11153   < clt 11293  cle 11294  0cn0 12524  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  pmatcoe1fsupp  22723
  Copyright terms: Public domain W3C validator