MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub0 Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub0 14013
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then all these functions are zero for all integers greater than a fixed integer. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
fsuppmapnn0fiub0 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Distinct variable groups:   𝑓,𝑀,𝑚   𝑅,𝑓,𝑚   𝑓,𝑉,𝑚   𝑓,𝑍,𝑚   𝑥,𝑀   𝑥,𝑅   𝑥,𝑉   𝑥,𝑍,𝑓,𝑚

Proof of Theorem fsuppmapnn0fiub0
StepHypRef Expression
1 fsuppmapnn0fiubex 14012 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚)))
2 ssel2 3974 . . . . . . . . . . . . . 14 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
32ancoms 457 . . . . . . . . . . . . 13 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 ∈ (𝑅m0))
4 elmapfn 8894 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
53, 4syl 17 . . . . . . . . . . . 12 ((𝑓𝑀𝑀 ⊆ (𝑅m0)) → 𝑓 Fn ℕ0)
65expcom 412 . . . . . . . . . . 11 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀𝑓 Fn ℕ0))
763ad2ant1 1130 . . . . . . . . . 10 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀𝑓 Fn ℕ0))
87adantr 479 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (𝑓𝑀𝑓 Fn ℕ0))
98imp 405 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑓 Fn ℕ0)
10 nn0ex 12530 . . . . . . . . 9 0 ∈ V
1110a1i 11 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ℕ0 ∈ V)
12 simpll3 1211 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → 𝑍𝑉)
13 suppvalfn 8182 . . . . . . . 8 ((𝑓 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍𝑉) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
149, 11, 12, 13syl3anc 1368 . . . . . . 7 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) = {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍})
1514sseq1d 4011 . . . . . 6 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ {𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚)))
16 rabss 4068 . . . . . 6 ({𝑥 ∈ ℕ0 ∣ (𝑓𝑥) ≠ 𝑍} ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)))
1715, 16bitrdi 286 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) ↔ ∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚))))
18 nne 2934 . . . . . . . . . 10 (¬ (𝑓𝑥) ≠ 𝑍 ↔ (𝑓𝑥) = 𝑍)
1918biimpi 215 . . . . . . . . 9 (¬ (𝑓𝑥) ≠ 𝑍 → (𝑓𝑥) = 𝑍)
20192a1d 26 . . . . . . . 8 (¬ (𝑓𝑥) ≠ 𝑍 → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
21 elfz2nn0 13646 . . . . . . . . 9 (𝑥 ∈ (0...𝑚) ↔ (𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚))
22 nn0re 12533 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
23 nn0re 12533 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
24 lenlt 11342 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
2522, 23, 24syl2an 594 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 ↔ ¬ 𝑚 < 𝑥))
26 pm2.21 123 . . . . . . . . . . . 12 𝑚 < 𝑥 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2725, 26biimtrdi 252 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0) → (𝑥𝑚 → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
28273impia 1114 . . . . . . . . . 10 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍))
2928a1d 25 . . . . . . . . 9 ((𝑥 ∈ ℕ0𝑚 ∈ ℕ0𝑥𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3021, 29sylbi 216 . . . . . . . 8 (𝑥 ∈ (0...𝑚) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3120, 30ja 186 . . . . . . 7 (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3231com12 32 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) ∧ 𝑥 ∈ ℕ0) → (((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3332ralimdva 3157 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → (∀𝑥 ∈ ℕ0 ((𝑓𝑥) ≠ 𝑍𝑥 ∈ (0...𝑚)) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3417, 33sylbid 239 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) ∧ 𝑓𝑀) → ((𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3534ralimdva 3157 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑚 ∈ ℕ0) → (∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∀𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
3635reximdva 3158 . 2 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∃𝑚 ∈ ℕ0𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑚) → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
371, 36syld 47 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∃𝑚 ∈ ℕ0𝑓𝑀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝑓𝑥) = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  wss 3947   class class class wbr 5153   Fn wfn 6549  cfv 6554  (class class class)co 7424   supp csupp 8174  m cmap 8855  Fincfn 8974   finSupp cfsupp 9405  cr 11157  0cc0 11158   < clt 11298  cle 11299  0cn0 12524  ...cfz 13538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539
This theorem is referenced by:  pmatcoe1fsupp  22694
  Copyright terms: Public domain W3C validator