Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqfval | Structured version Visualization version GIF version |
Description: Value of the function appearing in df-kq 22925. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqfval | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
2 | rabexg 5269 | . 2 ⊢ (𝐽 ∈ 𝑉 → {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦} ∈ V) | |
3 | eleq1 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦)) | |
4 | 3 | rabbidv 3411 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
5 | kqval.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
6 | 4, 5 | fvmptg 6912 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦} ∈ V) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
7 | 1, 2, 6 | syl2anr 597 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3440 ↦ cmpt 5169 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 |
This theorem is referenced by: kqfeq 22955 isr0 22968 |
Copyright terms: Public domain | W3C validator |