MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfval Structured version   Visualization version   GIF version

Theorem kqfval 22874
Description: Value of the function appearing in df-kq 22845. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqfval ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqfval
StepHypRef Expression
1 id 22 . 2 (𝐴𝑋𝐴𝑋)
2 rabexg 5255 . 2 (𝐽𝑉 → {𝑦𝐽𝐴𝑦} ∈ V)
3 eleq1 2826 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
43rabbidv 3414 . . 3 (𝑥 = 𝐴 → {𝑦𝐽𝑥𝑦} = {𝑦𝐽𝐴𝑦})
5 kqval.2 . . 3 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
64, 5fvmptg 6873 . 2 ((𝐴𝑋 ∧ {𝑦𝐽𝐴𝑦} ∈ V) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
71, 2, 6syl2anr 597 1 ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cmpt 5157  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  kqfeq  22875  isr0  22888
  Copyright terms: Public domain W3C validator