MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfval Structured version   Visualization version   GIF version

Theorem kqfval 21935
Description: Value of the function appearing in df-kq 21906. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqfval ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqfval
StepHypRef Expression
1 id 22 . 2 (𝐴𝑋𝐴𝑋)
2 rabexg 5048 . 2 (𝐽𝑉 → {𝑦𝐽𝐴𝑦} ∈ V)
3 eleq1 2846 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
43rabbidv 3385 . . 3 (𝑥 = 𝐴 → {𝑦𝐽𝑥𝑦} = {𝑦𝐽𝐴𝑦})
5 kqval.2 . . 3 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
64, 5fvmptg 6540 . 2 ((𝐴𝑋 ∧ {𝑦𝐽𝐴𝑦} ∈ V) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
71, 2, 6syl2anr 590 1 ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  {crab 3093  Vcvv 3397  cmpt 4965  cfv 6135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143
This theorem is referenced by:  kqfeq  21936  isr0  21949
  Copyright terms: Public domain W3C validator