MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfval Structured version   Visualization version   GIF version

Theorem kqfval 23631
Description: Value of the function appearing in df-kq 23602. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqfval ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqfval
StepHypRef Expression
1 id 22 . 2 (𝐴𝑋𝐴𝑋)
2 rabexg 5273 . 2 (𝐽𝑉 → {𝑦𝐽𝐴𝑦} ∈ V)
3 eleq1 2817 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
43rabbidv 3400 . . 3 (𝑥 = 𝐴 → {𝑦𝐽𝑥𝑦} = {𝑦𝐽𝐴𝑦})
5 kqval.2 . . 3 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
64, 5fvmptg 6922 . 2 ((𝐴𝑋 ∧ {𝑦𝐽𝐴𝑦} ∈ V) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
71, 2, 6syl2anr 597 1 ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  {crab 3393  Vcvv 3434  cmpt 5170  cfv 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485
This theorem is referenced by:  kqfeq  23632  isr0  23645
  Copyright terms: Public domain W3C validator