![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqfval | Structured version Visualization version GIF version |
Description: Value of the function appearing in df-kq 23723. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqfval | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
2 | rabexg 5355 | . 2 ⊢ (𝐽 ∈ 𝑉 → {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦} ∈ V) | |
3 | eleq1 2832 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦)) | |
4 | 3 | rabbidv 3451 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
5 | kqval.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
6 | 4, 5 | fvmptg 7027 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦} ∈ V) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
7 | 1, 2, 6 | syl2anr 596 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: kqfeq 23753 isr0 23766 |
Copyright terms: Public domain | W3C validator |