![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqfeq | Structured version Visualization version GIF version |
Description: Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqfeq | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
2 | 1 | kqfval 23097 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
3 | 2 | 3adant3 1133 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
4 | 1 | kqfval 23097 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) = {𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦}) |
5 | 4 | 3adant2 1132 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) = {𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦}) |
6 | 3, 5 | eqeq12d 2749 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦})) |
7 | rabbi 3431 | . 2 ⊢ (∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦) ↔ {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦}) | |
8 | 6, 7 | bitr4di 289 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3061 {crab 3406 ↦ cmpt 5192 ‘cfv 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-iota 6452 df-fun 6502 df-fv 6508 |
This theorem is referenced by: ist0-4 23103 kqfvima 23104 kqt0lem 23110 isr0 23111 r0cld 23112 regr1lem2 23114 |
Copyright terms: Public domain | W3C validator |