MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfeq Structured version   Visualization version   GIF version

Theorem kqfeq 23753
Description: Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqfeq ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ ∀𝑦𝐽 (𝐴𝑦𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqfeq
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqfval 23752 . . . 4 ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
323adant3 1132 . . 3 ((𝐽𝑉𝐴𝑋𝐵𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
41kqfval 23752 . . . 4 ((𝐽𝑉𝐵𝑋) → (𝐹𝐵) = {𝑦𝐽𝐵𝑦})
543adant2 1131 . . 3 ((𝐽𝑉𝐴𝑋𝐵𝑋) → (𝐹𝐵) = {𝑦𝐽𝐵𝑦})
63, 5eqeq12d 2756 . 2 ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ {𝑦𝐽𝐴𝑦} = {𝑦𝐽𝐵𝑦}))
7 rabbi 3475 . 2 (∀𝑦𝐽 (𝐴𝑦𝐵𝑦) ↔ {𝑦𝐽𝐴𝑦} = {𝑦𝐽𝐵𝑦})
86, 7bitr4di 289 1 ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ ∀𝑦𝐽 (𝐴𝑦𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cmpt 5249  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  ist0-4  23758  kqfvima  23759  kqt0lem  23765  isr0  23766  r0cld  23767  regr1lem2  23769
  Copyright terms: Public domain W3C validator