![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqfeq | Structured version Visualization version GIF version |
Description: Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqval.2 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) |
Ref | Expression |
---|---|
kqfeq | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
2 | 1 | kqfval 21904 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
3 | 2 | 3adant3 1166 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐴) = {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦}) |
4 | 1 | kqfval 21904 | . . . 4 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) = {𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦}) |
5 | 4 | 3adant2 1165 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) = {𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦}) |
6 | 3, 5 | eqeq12d 2840 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦})) |
7 | rabbi 3331 | . 2 ⊢ (∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦) ↔ {𝑦 ∈ 𝐽 ∣ 𝐴 ∈ 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝐵 ∈ 𝑦}) | |
8 | 6, 7 | syl6bbr 281 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 ↔ 𝐵 ∈ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 {crab 3121 ↦ cmpt 4954 ‘cfv 6127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 |
This theorem is referenced by: ist0-4 21910 kqfvima 21911 kqt0lem 21917 isr0 21918 r0cld 21919 regr1lem2 21921 |
Copyright terms: Public domain | W3C validator |