MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfeq Structured version   Visualization version   GIF version

Theorem kqfeq 23587
Description: Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqfeq ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ ∀𝑦𝐽 (𝐴𝑦𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqfeq
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqfval 23586 . . . 4 ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
323adant3 1132 . . 3 ((𝐽𝑉𝐴𝑋𝐵𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
41kqfval 23586 . . . 4 ((𝐽𝑉𝐵𝑋) → (𝐹𝐵) = {𝑦𝐽𝐵𝑦})
543adant2 1131 . . 3 ((𝐽𝑉𝐴𝑋𝐵𝑋) → (𝐹𝐵) = {𝑦𝐽𝐵𝑦})
63, 5eqeq12d 2745 . 2 ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ {𝑦𝐽𝐴𝑦} = {𝑦𝐽𝐵𝑦}))
7 rabbi 3433 . 2 (∀𝑦𝐽 (𝐴𝑦𝐵𝑦) ↔ {𝑦𝐽𝐴𝑦} = {𝑦𝐽𝐵𝑦})
86, 7bitr4di 289 1 ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ ∀𝑦𝐽 (𝐴𝑦𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  cmpt 5183  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507
This theorem is referenced by:  ist0-4  23592  kqfvima  23593  kqt0lem  23599  isr0  23600  r0cld  23601  regr1lem2  23603
  Copyright terms: Public domain W3C validator