MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfeq Structured version   Visualization version   GIF version

Theorem kqfeq 23227
Description: Two points in the Kolmogorov quotient are equal iff the original points are topologically indistinguishable. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqfeq ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ ∀𝑦𝐽 (𝐴𝑦𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem kqfeq
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqfval 23226 . . . 4 ((𝐽𝑉𝐴𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
323adant3 1132 . . 3 ((𝐽𝑉𝐴𝑋𝐵𝑋) → (𝐹𝐴) = {𝑦𝐽𝐴𝑦})
41kqfval 23226 . . . 4 ((𝐽𝑉𝐵𝑋) → (𝐹𝐵) = {𝑦𝐽𝐵𝑦})
543adant2 1131 . . 3 ((𝐽𝑉𝐴𝑋𝐵𝑋) → (𝐹𝐵) = {𝑦𝐽𝐵𝑦})
63, 5eqeq12d 2748 . 2 ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ {𝑦𝐽𝐴𝑦} = {𝑦𝐽𝐵𝑦}))
7 rabbi 3462 . 2 (∀𝑦𝐽 (𝐴𝑦𝐵𝑦) ↔ {𝑦𝐽𝐴𝑦} = {𝑦𝐽𝐵𝑦})
86, 7bitr4di 288 1 ((𝐽𝑉𝐴𝑋𝐵𝑋) → ((𝐹𝐴) = (𝐹𝐵) ↔ ∀𝑦𝐽 (𝐴𝑦𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  wral 3061  {crab 3432  cmpt 5231  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  ist0-4  23232  kqfvima  23233  kqt0lem  23239  isr0  23240  r0cld  23241  regr1lem2  23243
  Copyright terms: Public domain W3C validator