MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubun Structured version   Visualization version   GIF version

Theorem lubun 18481
Description: The LUB of a union. (Contributed by NM, 5-Mar-2012.)
Hypotheses
Ref Expression
lubun.b 𝐵 = (Base‘𝐾)
lubun.j = (join‘𝐾)
lubun.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubun ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = ((𝑈𝑆) (𝑈𝑇)))

Proof of Theorem lubun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubun.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2730 . . 3 (le‘𝐾) = (le‘𝐾)
3 lubun.u . . 3 𝑈 = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 simp1 1136 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → 𝐾 ∈ CLat)
6 unss 4156 . . . . 5 ((𝑆𝐵𝑇𝐵) ↔ (𝑆𝑇) ⊆ 𝐵)
76biimpi 216 . . . 4 ((𝑆𝐵𝑇𝐵) → (𝑆𝑇) ⊆ 𝐵)
873adant1 1130 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑆𝑇) ⊆ 𝐵)
91, 2, 3, 4, 5, 8lubval 18322 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = (𝑥𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
10 clatl 18474 . . . . 5 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
11103ad2ant1 1133 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → 𝐾 ∈ Lat)
121, 3clatlubcl 18469 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
13123adant3 1132 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈𝑆) ∈ 𝐵)
141, 3clatlubcl 18469 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
15143adant2 1131 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
16 lubun.j . . . . 5 = (join‘𝐾)
171, 16latjcl 18405 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
1811, 13, 15, 17syl3anc 1373 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
19 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
2019, 10syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
21 simpl2 1193 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑆𝐵)
22 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦𝑆)
2321, 22sseldd 3950 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
2419, 21, 12syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑆) ∈ 𝐵)
25 simpl3 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑇𝐵)
2619, 25, 14syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑇) ∈ 𝐵)
2720, 24, 26, 17syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
281, 2, 3lubel 18480 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑦𝑆𝑆𝐵) → 𝑦(le‘𝐾)(𝑈𝑆))
2919, 22, 21, 28syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦(le‘𝐾)(𝑈𝑆))
301, 2, 16latlej1 18414 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (𝑈𝑆)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3120, 24, 26, 30syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑆)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
321, 2, 20, 23, 24, 27, 29, 31lattrd 18412 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3332ralrimiva 3126 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦𝑆 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3411adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝐾 ∈ Lat)
35 simpl3 1194 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑇𝐵)
36 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦𝑇)
3735, 36sseldd 3950 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦𝐵)
38 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝐾 ∈ CLat)
3938, 35, 14syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑇) ∈ 𝐵)
4018adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
411, 2, 3lubel 18480 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑦𝑇𝑇𝐵) → 𝑦(le‘𝐾)(𝑈𝑇))
4238, 36, 35, 41syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦(le‘𝐾)(𝑈𝑇))
43 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑆𝐵)
4438, 43, 12syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑆) ∈ 𝐵)
451, 2, 16latlej2 18415 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (𝑈𝑇)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
4634, 44, 39, 45syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑇)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
471, 2, 34, 37, 39, 40, 42, 46lattrd 18412 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
4847ralrimiva 3126 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦𝑇 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
49 ralunb 4163 . . . . . . . . . 10 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5033, 48, 49sylanbrc 583 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
51 breq2 5114 . . . . . . . . . . . . 13 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (𝑦(le‘𝐾)𝑧𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5251ralbidv 3157 . . . . . . . . . . . 12 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 ↔ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
53 breq2 5114 . . . . . . . . . . . 12 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (𝑥(le‘𝐾)𝑧𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5452, 53imbi12d 344 . . . . . . . . . . 11 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5554rspcv 3587 . . . . . . . . . 10 (((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵 → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5618, 55syl 17 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5750, 56mpid 44 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5857imp 406 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
5958ad2ant2rl 749 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
60 ralunb 4163 . . . . . . . . 9 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥))
61 simpl1 1192 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ CLat)
62 simpl2 1193 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑆𝐵)
63 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
641, 2, 3lubl 18478 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 → (𝑈𝑆)(le‘𝐾)𝑥))
6561, 62, 63, 64syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 → (𝑈𝑆)(le‘𝐾)𝑥))
66 simpl3 1194 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑇𝐵)
671, 2, 3lubl 18478 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑥𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 → (𝑈𝑇)(le‘𝐾)𝑥))
6861, 66, 63, 67syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 → (𝑈𝑇)(le‘𝐾)𝑥))
6965, 68anim12d 609 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥) → ((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥)))
7061, 10syl 17 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ Lat)
7113adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑈𝑆) ∈ 𝐵)
7215adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑈𝑇) ∈ 𝐵)
731, 2, 16latjle12 18416 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵𝑥𝐵)) → (((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7470, 71, 72, 63, 73syl13anc 1374 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7569, 74sylibd 239 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7660, 75biimtrid 242 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7776imp 406 . . . . . . 7 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥)
7877adantrr 717 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥)
7918adantr 480 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
801, 2latasymb 18408 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑥𝐵 ∧ ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8170, 63, 79, 80syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8281adantr 480 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8359, 78, 82mpbi2and 712 . . . . 5 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → 𝑥 = ((𝑈𝑆) (𝑈𝑇)))
8483ex 412 . . . 4 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
85 elun 4119 . . . . . . . 8 (𝑦 ∈ (𝑆𝑇) ↔ (𝑦𝑆𝑦𝑇))
8632, 47jaodan 959 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ (𝑦𝑆𝑦𝑇)) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
8785, 86sylan2b 594 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
8887ralrimiva 3126 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
89 ralunb 4163 . . . . . . . . 9 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧))
90 simpl1 1192 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ CLat)
91 simpl2 1193 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑆𝐵)
92 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
931, 2, 3lubl 18478 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑧𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
9490, 91, 92, 93syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
95 simpl3 1194 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑇𝐵)
961, 2, 3lubl 18478 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑧𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑇)(le‘𝐾)𝑧))
9790, 95, 92, 96syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑇)(le‘𝐾)𝑧))
9894, 97anim12d 609 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑧 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → ((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧)))
9989, 98biimtrid 242 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧)))
10090, 10syl 17 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Lat)
10190, 91, 12syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (𝑈𝑆) ∈ 𝐵)
10290, 95, 14syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (𝑈𝑇) ∈ 𝐵)
1031, 2, 16latjle12 18416 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵𝑧𝐵)) → (((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
104100, 101, 102, 92, 103syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
10599, 104sylibd 239 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
106105ralrimiva 3126 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
107 breq2 5114 . . . . . . . . 9 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
108107ralbidv 3157 . . . . . . . 8 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ↔ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
109 breq1 5113 . . . . . . . . . 10 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (𝑥(le‘𝐾)𝑧 ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
110109imbi2d 340 . . . . . . . . 9 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)))
111110ralbidv 3157 . . . . . . . 8 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)))
112108, 111anbi12d 632 . . . . . . 7 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))))
113112biimprcd 250 . . . . . 6 ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
11488, 106, 113syl2anc 584 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
115114adantr 480 . . . 4 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
11684, 115impbid 212 . . 3 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
11718, 116riota5 7376 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑥𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) = ((𝑈𝑆) (𝑈𝑇)))
1189, 117eqtrd 2765 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = ((𝑈𝑆) (𝑈𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cun 3915  wss 3917   class class class wbr 5110  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  lecple 17234  lubclub 18277  joincjn 18279  Latclat 18397  CLatccla 18464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398  df-clat 18465
This theorem is referenced by:  paddunN  39928  poldmj1N  39929
  Copyright terms: Public domain W3C validator