MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubun Structured version   Visualization version   GIF version

Theorem lubun 18233
Description: The LUB of a union. (Contributed by NM, 5-Mar-2012.)
Hypotheses
Ref Expression
lubun.b 𝐵 = (Base‘𝐾)
lubun.j = (join‘𝐾)
lubun.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubun ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = ((𝑈𝑆) (𝑈𝑇)))

Proof of Theorem lubun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubun.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2738 . . 3 (le‘𝐾) = (le‘𝐾)
3 lubun.u . . 3 𝑈 = (lub‘𝐾)
4 biid 260 . . 3 ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 simp1 1135 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → 𝐾 ∈ CLat)
6 unss 4118 . . . . 5 ((𝑆𝐵𝑇𝐵) ↔ (𝑆𝑇) ⊆ 𝐵)
76biimpi 215 . . . 4 ((𝑆𝐵𝑇𝐵) → (𝑆𝑇) ⊆ 𝐵)
873adant1 1129 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑆𝑇) ⊆ 𝐵)
91, 2, 3, 4, 5, 8lubval 18074 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = (𝑥𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
10 clatl 18226 . . . . 5 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
11103ad2ant1 1132 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → 𝐾 ∈ Lat)
121, 3clatlubcl 18221 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
13123adant3 1131 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈𝑆) ∈ 𝐵)
141, 3clatlubcl 18221 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
15143adant2 1130 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
16 lubun.j . . . . 5 = (join‘𝐾)
171, 16latjcl 18157 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
1811, 13, 15, 17syl3anc 1370 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
19 simpl1 1190 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
2019, 10syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
21 simpl2 1191 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑆𝐵)
22 simpr 485 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦𝑆)
2321, 22sseldd 3922 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
2419, 21, 12syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑆) ∈ 𝐵)
25 simpl3 1192 . . . . . . . . . . . . . 14 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑇𝐵)
2619, 25, 14syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑇) ∈ 𝐵)
2720, 24, 26, 17syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
281, 2, 3lubel 18232 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑦𝑆𝑆𝐵) → 𝑦(le‘𝐾)(𝑈𝑆))
2919, 22, 21, 28syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦(le‘𝐾)(𝑈𝑆))
301, 2, 16latlej1 18166 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (𝑈𝑆)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3120, 24, 26, 30syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑆)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
321, 2, 20, 23, 24, 27, 29, 31lattrd 18164 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3332ralrimiva 3103 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦𝑆 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3411adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝐾 ∈ Lat)
35 simpl3 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑇𝐵)
36 simpr 485 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦𝑇)
3735, 36sseldd 3922 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦𝐵)
38 simpl1 1190 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝐾 ∈ CLat)
3938, 35, 14syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑇) ∈ 𝐵)
4018adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
411, 2, 3lubel 18232 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑦𝑇𝑇𝐵) → 𝑦(le‘𝐾)(𝑈𝑇))
4238, 36, 35, 41syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦(le‘𝐾)(𝑈𝑇))
43 simpl2 1191 . . . . . . . . . . . . . 14 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑆𝐵)
4438, 43, 12syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑆) ∈ 𝐵)
451, 2, 16latlej2 18167 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (𝑈𝑇)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
4634, 44, 39, 45syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑇)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
471, 2, 34, 37, 39, 40, 42, 46lattrd 18164 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
4847ralrimiva 3103 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦𝑇 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
49 ralunb 4125 . . . . . . . . . 10 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5033, 48, 49sylanbrc 583 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
51 breq2 5078 . . . . . . . . . . . . 13 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (𝑦(le‘𝐾)𝑧𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5251ralbidv 3112 . . . . . . . . . . . 12 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 ↔ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
53 breq2 5078 . . . . . . . . . . . 12 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (𝑥(le‘𝐾)𝑧𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5452, 53imbi12d 345 . . . . . . . . . . 11 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5554rspcv 3557 . . . . . . . . . 10 (((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵 → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5618, 55syl 17 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5750, 56mpid 44 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5857imp 407 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
5958ad2ant2rl 746 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
60 ralunb 4125 . . . . . . . . 9 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥))
61 simpl1 1190 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ CLat)
62 simpl2 1191 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑆𝐵)
63 simpr 485 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
641, 2, 3lubl 18230 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 → (𝑈𝑆)(le‘𝐾)𝑥))
6561, 62, 63, 64syl3anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 → (𝑈𝑆)(le‘𝐾)𝑥))
66 simpl3 1192 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑇𝐵)
671, 2, 3lubl 18230 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑥𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 → (𝑈𝑇)(le‘𝐾)𝑥))
6861, 66, 63, 67syl3anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 → (𝑈𝑇)(le‘𝐾)𝑥))
6965, 68anim12d 609 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥) → ((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥)))
7061, 10syl 17 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ Lat)
7113adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑈𝑆) ∈ 𝐵)
7215adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑈𝑇) ∈ 𝐵)
731, 2, 16latjle12 18168 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵𝑥𝐵)) → (((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7470, 71, 72, 63, 73syl13anc 1371 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7569, 74sylibd 238 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7660, 75syl5bi 241 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7776imp 407 . . . . . . 7 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥)
7877adantrr 714 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥)
7918adantr 481 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
801, 2latasymb 18160 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑥𝐵 ∧ ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8170, 63, 79, 80syl3anc 1370 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8281adantr 481 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8359, 78, 82mpbi2and 709 . . . . 5 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → 𝑥 = ((𝑈𝑆) (𝑈𝑇)))
8483ex 413 . . . 4 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
85 elun 4083 . . . . . . . 8 (𝑦 ∈ (𝑆𝑇) ↔ (𝑦𝑆𝑦𝑇))
8632, 47jaodan 955 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ (𝑦𝑆𝑦𝑇)) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
8785, 86sylan2b 594 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
8887ralrimiva 3103 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
89 ralunb 4125 . . . . . . . . 9 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧))
90 simpl1 1190 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ CLat)
91 simpl2 1191 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑆𝐵)
92 simpr 485 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
931, 2, 3lubl 18230 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑧𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
9490, 91, 92, 93syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
95 simpl3 1192 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑇𝐵)
961, 2, 3lubl 18230 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑧𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑇)(le‘𝐾)𝑧))
9790, 95, 92, 96syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑇)(le‘𝐾)𝑧))
9894, 97anim12d 609 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑧 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → ((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧)))
9989, 98syl5bi 241 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧)))
10090, 10syl 17 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Lat)
10190, 91, 12syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (𝑈𝑆) ∈ 𝐵)
10290, 95, 14syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (𝑈𝑇) ∈ 𝐵)
1031, 2, 16latjle12 18168 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵𝑧𝐵)) → (((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
104100, 101, 102, 92, 103syl13anc 1371 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
10599, 104sylibd 238 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
106105ralrimiva 3103 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
107 breq2 5078 . . . . . . . . 9 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
108107ralbidv 3112 . . . . . . . 8 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ↔ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
109 breq1 5077 . . . . . . . . . 10 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (𝑥(le‘𝐾)𝑧 ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
110109imbi2d 341 . . . . . . . . 9 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)))
111110ralbidv 3112 . . . . . . . 8 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)))
112108, 111anbi12d 631 . . . . . . 7 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))))
113112biimprcd 249 . . . . . 6 ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
11488, 106, 113syl2anc 584 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
115114adantr 481 . . . 4 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
11684, 115impbid 211 . . 3 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
11718, 116riota5 7262 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑥𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) = ((𝑈𝑆) (𝑈𝑇)))
1189, 117eqtrd 2778 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = ((𝑈𝑆) (𝑈𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cun 3885  wss 3887   class class class wbr 5074  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  lubclub 18027  joincjn 18029  Latclat 18149  CLatccla 18216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150  df-clat 18217
This theorem is referenced by:  paddunN  37941  poldmj1N  37942
  Copyright terms: Public domain W3C validator