MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubun Structured version   Visualization version   GIF version

Theorem lubun 18421
Description: The LUB of a union. (Contributed by NM, 5-Mar-2012.)
Hypotheses
Ref Expression
lubun.b 𝐵 = (Base‘𝐾)
lubun.j = (join‘𝐾)
lubun.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lubun ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = ((𝑈𝑆) (𝑈𝑇)))

Proof of Theorem lubun
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubun.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2731 . . 3 (le‘𝐾) = (le‘𝐾)
3 lubun.u . . 3 𝑈 = (lub‘𝐾)
4 biid 261 . . 3 ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 simp1 1136 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → 𝐾 ∈ CLat)
6 unss 4137 . . . . 5 ((𝑆𝐵𝑇𝐵) ↔ (𝑆𝑇) ⊆ 𝐵)
76biimpi 216 . . . 4 ((𝑆𝐵𝑇𝐵) → (𝑆𝑇) ⊆ 𝐵)
873adant1 1130 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑆𝑇) ⊆ 𝐵)
91, 2, 3, 4, 5, 8lubval 18260 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = (𝑥𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
10 clatl 18414 . . . . 5 (𝐾 ∈ CLat → 𝐾 ∈ Lat)
11103ad2ant1 1133 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → 𝐾 ∈ Lat)
121, 3clatlubcl 18409 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
13123adant3 1132 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈𝑆) ∈ 𝐵)
141, 3clatlubcl 18409 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
15143adant2 1131 . . . 4 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈𝑇) ∈ 𝐵)
16 lubun.j . . . . 5 = (join‘𝐾)
171, 16latjcl 18345 . . . 4 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
1811, 13, 15, 17syl3anc 1373 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
19 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ CLat)
2019, 10syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝐾 ∈ Lat)
21 simpl2 1193 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑆𝐵)
22 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦𝑆)
2321, 22sseldd 3930 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦𝐵)
2419, 21, 12syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑆) ∈ 𝐵)
25 simpl3 1194 . . . . . . . . . . . . . 14 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑇𝐵)
2619, 25, 14syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑇) ∈ 𝐵)
2720, 24, 26, 17syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
281, 2, 3lubel 18420 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑦𝑆𝑆𝐵) → 𝑦(le‘𝐾)(𝑈𝑆))
2919, 22, 21, 28syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦(le‘𝐾)(𝑈𝑆))
301, 2, 16latlej1 18354 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (𝑈𝑆)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3120, 24, 26, 30syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → (𝑈𝑆)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
321, 2, 20, 23, 24, 27, 29, 31lattrd 18352 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑆) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3332ralrimiva 3124 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦𝑆 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
3411adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝐾 ∈ Lat)
35 simpl3 1194 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑇𝐵)
36 simpr 484 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦𝑇)
3735, 36sseldd 3930 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦𝐵)
38 simpl1 1192 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝐾 ∈ CLat)
3938, 35, 14syl2anc 584 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑇) ∈ 𝐵)
4018adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
411, 2, 3lubel 18420 . . . . . . . . . . . . 13 ((𝐾 ∈ CLat ∧ 𝑦𝑇𝑇𝐵) → 𝑦(le‘𝐾)(𝑈𝑇))
4238, 36, 35, 41syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦(le‘𝐾)(𝑈𝑇))
43 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑆𝐵)
4438, 43, 12syl2anc 584 . . . . . . . . . . . . 13 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑆) ∈ 𝐵)
451, 2, 16latlej2 18355 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵) → (𝑈𝑇)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
4634, 44, 39, 45syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → (𝑈𝑇)(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
471, 2, 34, 37, 39, 40, 42, 46lattrd 18352 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦𝑇) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
4847ralrimiva 3124 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦𝑇 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
49 ralunb 4144 . . . . . . . . . 10 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5033, 48, 49sylanbrc 583 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
51 breq2 5093 . . . . . . . . . . . . 13 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (𝑦(le‘𝐾)𝑧𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5251ralbidv 3155 . . . . . . . . . . . 12 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 ↔ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
53 breq2 5093 . . . . . . . . . . . 12 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → (𝑥(le‘𝐾)𝑧𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5452, 53imbi12d 344 . . . . . . . . . . 11 (𝑧 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5554rspcv 3568 . . . . . . . . . 10 (((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵 → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5618, 55syl 17 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))))
5750, 56mpid 44 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
5857imp 406 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
5958ad2ant2rl 749 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → 𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
60 ralunb 4144 . . . . . . . . 9 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥))
61 simpl1 1192 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ CLat)
62 simpl2 1193 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑆𝐵)
63 simpr 484 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
641, 2, 3lubl 18418 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑥𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 → (𝑈𝑆)(le‘𝐾)𝑥))
6561, 62, 63, 64syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 → (𝑈𝑆)(le‘𝐾)𝑥))
66 simpl3 1194 . . . . . . . . . . . 12 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝑇𝐵)
671, 2, 3lubl 18418 . . . . . . . . . . . 12 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑥𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 → (𝑈𝑇)(le‘𝐾)𝑥))
6861, 66, 63, 67syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 → (𝑈𝑇)(le‘𝐾)𝑥))
6965, 68anim12d 609 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥) → ((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥)))
7061, 10syl 17 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ Lat)
7113adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑈𝑆) ∈ 𝐵)
7215adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑈𝑇) ∈ 𝐵)
731, 2, 16latjle12 18356 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ ((𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵𝑥𝐵)) → (((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7470, 71, 72, 63, 73syl13anc 1374 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (((𝑈𝑆)(le‘𝐾)𝑥 ∧ (𝑈𝑇)(le‘𝐾)𝑥) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7569, 74sylibd 239 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑥) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7660, 75biimtrid 242 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥))
7776imp 406 . . . . . . 7 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥)
7877adantrr 717 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥)
7918adantr 480 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵)
801, 2latasymb 18348 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑥𝐵 ∧ ((𝑈𝑆) (𝑈𝑇)) ∈ 𝐵) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8170, 63, 79, 80syl3anc 1373 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8281adantr 480 . . . . . 6 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → ((𝑥(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑥) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
8359, 78, 82mpbi2and 712 . . . . 5 ((((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) ∧ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) → 𝑥 = ((𝑈𝑆) (𝑈𝑇)))
8483ex 412 . . . 4 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
85 elun 4100 . . . . . . . 8 (𝑦 ∈ (𝑆𝑇) ↔ (𝑦𝑆𝑦𝑇))
8632, 47jaodan 959 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ (𝑦𝑆𝑦𝑇)) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
8785, 86sylan2b 594 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑦 ∈ (𝑆𝑇)) → 𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
8887ralrimiva 3124 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)))
89 ralunb 4144 . . . . . . . . 9 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧))
90 simpl1 1192 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ CLat)
91 simpl2 1193 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑆𝐵)
92 simpr 484 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑧𝐵)
931, 2, 3lubl 18418 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑧𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
9490, 91, 92, 93syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦𝑆 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
95 simpl3 1194 . . . . . . . . . . 11 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝑇𝐵)
961, 2, 3lubl 18418 . . . . . . . . . . 11 ((𝐾 ∈ CLat ∧ 𝑇𝐵𝑧𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑇)(le‘𝐾)𝑧))
9790, 95, 92, 96syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑇)(le‘𝐾)𝑧))
9894, 97anim12d 609 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → ((∀𝑦𝑆 𝑦(le‘𝐾)𝑧 ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → ((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧)))
9989, 98biimtrid 242 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧)))
10090, 10syl 17 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → 𝐾 ∈ Lat)
10190, 91, 12syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (𝑈𝑆) ∈ 𝐵)
10290, 95, 14syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (𝑈𝑇) ∈ 𝐵)
1031, 2, 16latjle12 18356 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑈𝑆) ∈ 𝐵 ∧ (𝑈𝑇) ∈ 𝐵𝑧𝐵)) → (((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
104100, 101, 102, 92, 103syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (((𝑈𝑆)(le‘𝐾)𝑧 ∧ (𝑈𝑇)(le‘𝐾)𝑧) ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
10599, 104sylibd 239 . . . . . . 7 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑧𝐵) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
106105ralrimiva 3124 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
107 breq2 5093 . . . . . . . . 9 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
108107ralbidv 3155 . . . . . . . 8 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ↔ ∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇))))
109 breq1 5092 . . . . . . . . . 10 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (𝑥(le‘𝐾)𝑧 ↔ ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))
110109imbi2d 340 . . . . . . . . 9 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)))
111110ralbidv 3155 . . . . . . . 8 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)))
112108, 111anbi12d 632 . . . . . . 7 (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧))))
113112biimprcd 250 . . . . . 6 ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)((𝑈𝑆) (𝑈𝑇)) ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧 → ((𝑈𝑆) (𝑈𝑇))(le‘𝐾)𝑧)) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
11488, 106, 113syl2anc 584 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
115114adantr 480 . . . 4 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → (𝑥 = ((𝑈𝑆) (𝑈𝑇)) → (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
11684, 115impbid 212 . . 3 (((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) ∧ 𝑥𝐵) → ((∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ 𝑥 = ((𝑈𝑆) (𝑈𝑇))))
11718, 116riota5 7332 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑥𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ (𝑆𝑇)𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) = ((𝑈𝑆) (𝑈𝑇)))
1189, 117eqtrd 2766 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑇𝐵) → (𝑈‘(𝑆𝑇)) = ((𝑈𝑆) (𝑈𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cun 3895  wss 3897   class class class wbr 5089  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  lecple 17168  lubclub 18215  joincjn 18217  Latclat 18337  CLatccla 18404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338  df-clat 18405
This theorem is referenced by:  paddunN  40036  poldmj1N  40037
  Copyright terms: Public domain W3C validator