Proof of Theorem cvrat3
Step | Hyp | Ref
| Expression |
1 | | cvrat3.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐾) |
2 | | cvrat3.l |
. . . . . . . . . . . 12
⊢ ≤ =
(le‘𝐾) |
3 | | cvrat3.j |
. . . . . . . . . . . 12
⊢ ∨ =
(join‘𝐾) |
4 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
5 | | cvrat3.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 1, 2, 3, 4, 5 | cvr1 37351 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑄 ≤ 𝑋 ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄))) |
7 | 6 | 3adant3r2 1181 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ 𝑄 ≤ 𝑋 ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄))) |
8 | 7 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ¬ 𝑄 ≤ 𝑋) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄)) |
9 | 8 | adantrr 713 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄)) |
10 | | hllat 37304 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
11 | 10 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) |
12 | | simpr2 1193 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
13 | 1, 5 | atbase 37230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) |
15 | | simpr3 1194 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
16 | 1, 5 | atbase 37230 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
18 | 1, 3 | latjcom 18080 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
19 | 11, 14, 17, 18 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
20 | 19 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ (𝑄 ∨ 𝑃))) |
21 | | simpr1 1192 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
22 | 1, 3 | latjass 18116 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵)) → ((𝑋 ∨ 𝑄) ∨ 𝑃) = (𝑋 ∨ (𝑄 ∨ 𝑃))) |
23 | 11, 21, 17, 14, 22 | syl13anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ∨ 𝑄) ∨ 𝑃) = (𝑋 ∨ (𝑄 ∨ 𝑃))) |
24 | 20, 23 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) = ((𝑋 ∨ 𝑄) ∨ 𝑃)) |
25 | 24 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) = ((𝑋 ∨ 𝑄) ∨ 𝑃)) |
26 | 1, 3 | latjcl 18072 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑋 ∨ 𝑄) ∈ 𝐵) |
27 | 11, 21, 17, 26 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ 𝑄) ∈ 𝐵) |
28 | 1, 2, 3 | latjlej2 18087 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵)) → (𝑃 ≤ (𝑋 ∨ 𝑄) → ((𝑋 ∨ 𝑄) ∨ 𝑃) ≤ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)))) |
29 | 11, 14, 27, 27, 28 | syl13anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ≤ (𝑋 ∨ 𝑄) → ((𝑋 ∨ 𝑄) ∨ 𝑃) ≤ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)))) |
30 | 29 | imp 406 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋 ∨ 𝑄) ∨ 𝑃) ≤ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄))) |
31 | 25, 30 | eqbrtrd 5092 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄))) |
32 | 1, 3 | latjidm 18095 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑄) ∈ 𝐵) → ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄)) |
33 | 11, 27, 32 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄)) |
34 | 33 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄)) |
35 | 31, 34 | breqtrd 5096 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ (𝑋 ∨ 𝑄)) |
36 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) |
37 | 2, 3, 5 | hlatlej2 37317 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
38 | 36, 12, 15, 37 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
39 | 1, 3 | latjcl 18072 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
40 | 11, 14, 17, 39 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
41 | 1, 2, 3 | latjlej2 18087 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑄 ≤ (𝑃 ∨ 𝑄) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄)))) |
42 | 11, 17, 40, 21, 41 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄 ≤ (𝑃 ∨ 𝑄) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄)))) |
43 | 38, 42 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) |
44 | 43 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) |
45 | 1, 3 | latjcl 18072 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) |
46 | 11, 21, 40, 45 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) |
47 | 1, 2 | latasymb 18075 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵) → (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄))) |
48 | 11, 46, 27, 47 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄))) |
49 | 48 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄))) |
50 | 35, 44, 49 | mpbi2and 708 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄)) |
51 | 50 | breq2d 5082 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄))) |
52 | 51 | adantrl 712 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄))) |
53 | 9, 52 | mpbird 256 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄))) |
54 | 53 | ex 412 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)))) |
55 | | cvrat3.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
56 | 1, 3, 55, 4 | cvrexch 37361 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → ((𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)))) |
57 | 36, 21, 40, 56 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)))) |
58 | 54, 57 | sylibrd 258 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) |
59 | 58 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → ((¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) |
60 | 1, 55 | latmcl 18073 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐵) |
61 | 11, 21, 40, 60 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐵) |
62 | 1, 3, 4, 5 | cvrat2 37370 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |
63 | 62 | 3expia 1119 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) |
64 | 36, 61, 12, 15, 63 | syl13anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) |
65 | 64 | expdimp 452 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → ((𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) |
66 | 59, 65 | syld 47 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → ((¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) |
67 | 66 | exp4b 430 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → (¬ 𝑄 ≤ 𝑋 → (𝑃 ≤ (𝑋 ∨ 𝑄) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)))) |
68 | 67 | 3impd 1346 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) |