Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat3 Structured version   Visualization version   GIF version

Theorem cvrat3 37951
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 31380 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat3.b 𝐡 = (Baseβ€˜πΎ)
cvrat3.l ≀ = (leβ€˜πΎ)
cvrat3.j ∨ = (joinβ€˜πΎ)
cvrat3.m ∧ = (meetβ€˜πΎ)
cvrat3.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cvrat3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴))

Proof of Theorem cvrat3
StepHypRef Expression
1 cvrat3.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜πΎ)
2 cvrat3.l . . . . . . . . . . . 12 ≀ = (leβ€˜πΎ)
3 cvrat3.j . . . . . . . . . . . 12 ∨ = (joinβ€˜πΎ)
4 eqid 2733 . . . . . . . . . . . 12 ( β‹– β€˜πΎ) = ( β‹– β€˜πΎ)
5 cvrat3.a . . . . . . . . . . . 12 𝐴 = (Atomsβ€˜πΎ)
61, 2, 3, 4, 5cvr1 37919 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (Β¬ 𝑄 ≀ 𝑋 ↔ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ 𝑄)))
763adant3r2 1184 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (Β¬ 𝑄 ≀ 𝑋 ↔ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ 𝑄)))
87biimpa 478 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ Β¬ 𝑄 ≀ 𝑋) β†’ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ 𝑄))
98adantrr 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄))) β†’ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ 𝑄))
10 hllat 37871 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
1110adantr 482 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
12 simpr2 1196 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝑃 ∈ 𝐴)
131, 5atbase 37797 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
1412, 13syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝑃 ∈ 𝐡)
15 simpr3 1197 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝑄 ∈ 𝐴)
161, 5atbase 37797 . . . . . . . . . . . . . . . . . 18 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝑄 ∈ 𝐡)
181, 3latjcom 18341 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
1911, 14, 17, 18syl3anc 1372 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃))
2019oveq2d 7374 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ (𝑄 ∨ 𝑃)))
21 simpr1 1195 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝑋 ∈ 𝐡)
221, 3latjass 18377 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡 ∧ 𝑃 ∈ 𝐡)) β†’ ((𝑋 ∨ 𝑄) ∨ 𝑃) = (𝑋 ∨ (𝑄 ∨ 𝑃)))
2311, 21, 17, 14, 22syl13anc 1373 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 ∨ 𝑄) ∨ 𝑃) = (𝑋 ∨ (𝑄 ∨ 𝑃)))
2420, 23eqtr4d 2776 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑋 ∨ (𝑃 ∨ 𝑄)) = ((𝑋 ∨ 𝑄) ∨ 𝑃))
2524adantr 482 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∨ (𝑃 ∨ 𝑄)) = ((𝑋 ∨ 𝑄) ∨ 𝑃))
261, 3latjcl 18333 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑋 ∨ 𝑄) ∈ 𝐡)
2711, 21, 17, 26syl3anc 1372 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑋 ∨ 𝑄) ∈ 𝐡)
281, 2, 3latjlej2 18348 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐡 ∧ (𝑋 ∨ 𝑄) ∈ 𝐡 ∧ (𝑋 ∨ 𝑄) ∈ 𝐡)) β†’ (𝑃 ≀ (𝑋 ∨ 𝑄) β†’ ((𝑋 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄))))
2911, 14, 27, 27, 28syl13anc 1373 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑃 ≀ (𝑋 ∨ 𝑄) β†’ ((𝑋 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄))))
3029imp 408 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ ((𝑋 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)))
3125, 30eqbrtrd 5128 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∨ (𝑃 ∨ 𝑄)) ≀ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)))
321, 3latjidm 18356 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑄) ∈ 𝐡) β†’ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄))
3311, 27, 32syl2anc 585 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄))
3433adantr 482 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄))
3531, 34breqtrd 5132 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∨ (𝑃 ∨ 𝑄)) ≀ (𝑋 ∨ 𝑄))
36 simpl 484 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝐾 ∈ HL)
372, 3, 5hlatlej2 37884 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄 ≀ (𝑃 ∨ 𝑄))
3836, 12, 15, 37syl3anc 1372 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ 𝑄 ≀ (𝑃 ∨ 𝑄))
391, 3latjcl 18333 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
4011, 14, 17, 39syl3anc 1372 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
411, 2, 3latjlej2 18348 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐡 ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ 𝑋 ∈ 𝐡)) β†’ (𝑄 ≀ (𝑃 ∨ 𝑄) β†’ (𝑋 ∨ 𝑄) ≀ (𝑋 ∨ (𝑃 ∨ 𝑄))))
4211, 17, 40, 21, 41syl13anc 1373 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑄 ≀ (𝑃 ∨ 𝑄) β†’ (𝑋 ∨ 𝑄) ≀ (𝑋 ∨ (𝑃 ∨ 𝑄))))
4338, 42mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑋 ∨ 𝑄) ≀ (𝑋 ∨ (𝑃 ∨ 𝑄)))
4443adantr 482 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∨ 𝑄) ≀ (𝑋 ∨ (𝑃 ∨ 𝑄)))
451, 3latjcl 18333 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ (𝑃 ∨ 𝑄) ∈ 𝐡) β†’ (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐡)
4611, 21, 40, 45syl3anc 1372 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐡)
471, 2latasymb 18336 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐡 ∧ (𝑋 ∨ 𝑄) ∈ 𝐡) β†’ (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≀ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≀ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄)))
4811, 46, 27, 47syl3anc 1372 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≀ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≀ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄)))
4948adantr 482 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≀ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≀ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄)))
5035, 44, 49mpbi2and 711 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄))
5150breq2d 5118 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋( β‹– β€˜πΎ)(𝑋 ∨ (𝑃 ∨ 𝑄)) ↔ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ 𝑄)))
5251adantrl 715 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄))) β†’ (𝑋( β‹– β€˜πΎ)(𝑋 ∨ (𝑃 ∨ 𝑄)) ↔ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ 𝑄)))
539, 52mpbird 257 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄))) β†’ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ (𝑃 ∨ 𝑄)))
5453ex 414 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ (𝑃 ∨ 𝑄))))
55 cvrat3.m . . . . . . . 8 ∧ = (meetβ€˜πΎ)
561, 3, 55, 4cvrexch 37929 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ (𝑃 ∨ 𝑄) ∈ 𝐡) β†’ ((𝑋 ∧ (𝑃 ∨ 𝑄))( β‹– β€˜πΎ)(𝑃 ∨ 𝑄) ↔ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ (𝑃 ∨ 𝑄))))
5736, 21, 40, 56syl3anc 1372 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑋 ∧ (𝑃 ∨ 𝑄))( β‹– β€˜πΎ)(𝑃 ∨ 𝑄) ↔ 𝑋( β‹– β€˜πΎ)(𝑋 ∨ (𝑃 ∨ 𝑄))))
5854, 57sylibrd 259 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄))( β‹– β€˜πΎ)(𝑃 ∨ 𝑄)))
5958adantr 482 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ ((Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄))( β‹– β€˜πΎ)(𝑃 ∨ 𝑄)))
601, 55latmcl 18334 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ (𝑃 ∨ 𝑄) ∈ 𝐡) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐡)
6111, 21, 40, 60syl3anc 1372 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐡)
621, 3, 4, 5cvrat2 37938 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( β‹– β€˜πΎ)(𝑃 ∨ 𝑄))) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)
63623expia 1122 . . . . . 6 ((𝐾 ∈ HL ∧ ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( β‹– β€˜πΎ)(𝑃 ∨ 𝑄)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴))
6436, 61, 12, 15, 63syl13anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( β‹– β€˜πΎ)(𝑃 ∨ 𝑄)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴))
6564expdimp 454 . . . 4 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ ((𝑋 ∧ (𝑃 ∨ 𝑄))( β‹– β€˜πΎ)(𝑃 ∨ 𝑄) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴))
6659, 65syld 47 . . 3 (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 β‰  𝑄) β†’ ((Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴))
6766exp4b 432 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ (𝑃 β‰  𝑄 β†’ (Β¬ 𝑄 ≀ 𝑋 β†’ (𝑃 ≀ (𝑋 ∨ 𝑄) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴))))
68673impd 1349 1 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ 𝑋 ∧ 𝑃 ≀ (𝑋 ∨ 𝑄)) β†’ (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  Basecbs 17088  lecple 17145  joincjn 18205  meetcmee 18206  Latclat 18325   β‹– ccvr 37770  Atomscatm 37771  HLchlt 37858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859
This theorem is referenced by:  cvrat4  37952  2atjm  37954  1cvrat  37985  2llnma1b  38295
  Copyright terms: Public domain W3C validator