Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat3 Structured version   Visualization version   GIF version

Theorem cvrat3 37383
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 30659 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat3.b 𝐵 = (Base‘𝐾)
cvrat3.l = (le‘𝐾)
cvrat3.j = (join‘𝐾)
cvrat3.m = (meet‘𝐾)
cvrat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))

Proof of Theorem cvrat3
StepHypRef Expression
1 cvrat3.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
2 cvrat3.l . . . . . . . . . . . 12 = (le‘𝐾)
3 cvrat3.j . . . . . . . . . . . 12 = (join‘𝐾)
4 eqid 2738 . . . . . . . . . . . 12 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5 cvrat3.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5cvr1 37351 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (¬ 𝑄 𝑋𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
763adant3r2 1181 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
87biimpa 476 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ¬ 𝑄 𝑋) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑄))
98adantrr 713 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑄))
10 hllat 37304 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1110adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
12 simpr2 1193 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
131, 5atbase 37230 . . . . . . . . . . . . . . . . . 18 (𝑃𝐴𝑃𝐵)
1412, 13syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
15 simpr3 1194 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
161, 5atbase 37230 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄𝐵)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
181, 3latjcom 18080 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
1911, 14, 17, 18syl3anc 1369 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
2019oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) = (𝑋 (𝑄 𝑃)))
21 simpr1 1192 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
221, 3latjass 18116 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑄𝐵𝑃𝐵)) → ((𝑋 𝑄) 𝑃) = (𝑋 (𝑄 𝑃)))
2311, 21, 17, 14, 22syl13anc 1370 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 𝑄) 𝑃) = (𝑋 (𝑄 𝑃)))
2420, 23eqtr4d 2781 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) = ((𝑋 𝑄) 𝑃))
2524adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) = ((𝑋 𝑄) 𝑃))
261, 3latjcl 18072 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
2711, 21, 17, 26syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 𝑄) ∈ 𝐵)
281, 2, 3latjlej2 18087 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑋 𝑄) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵)) → (𝑃 (𝑋 𝑄) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄))))
2911, 14, 27, 27, 28syl13anc 1370 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 (𝑋 𝑄) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄))))
3029imp 406 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄)))
3125, 30eqbrtrd 5092 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ((𝑋 𝑄) (𝑋 𝑄)))
321, 3latjidm 18095 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑋 𝑄) ∈ 𝐵) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3311, 27, 32syl2anc 583 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3433adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3531, 34breqtrd 5096 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) (𝑋 𝑄))
36 simpl 482 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
372, 3, 5hlatlej2 37317 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
3836, 12, 15, 37syl3anc 1369 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄 (𝑃 𝑄))
391, 3latjcl 18072 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
4011, 14, 17, 39syl3anc 1369 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
411, 2, 3latjlej2 18087 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑄𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵)) → (𝑄 (𝑃 𝑄) → (𝑋 𝑄) (𝑋 (𝑃 𝑄))))
4211, 17, 40, 21, 41syl13anc 1370 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 (𝑃 𝑄) → (𝑋 𝑄) (𝑋 (𝑃 𝑄))))
4338, 42mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 𝑄) (𝑋 (𝑃 𝑄)))
4443adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑄) (𝑋 (𝑃 𝑄)))
451, 3latjcl 18072 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
4611, 21, 40, 45syl3anc 1369 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
471, 2latasymb 18075 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑋 (𝑃 𝑄)) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
4811, 46, 27, 47syl3anc 1369 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
4948adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
5035, 44, 49mpbi2and 708 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) = (𝑋 𝑄))
5150breq2d 5082 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
5251adantrl 712 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → (𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
539, 52mpbird 256 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)))
5453ex 412 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
55 cvrat3.m . . . . . . . 8 = (meet‘𝐾)
561, 3, 55, 4cvrexch 37361 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
5736, 21, 40, 56syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
5854, 57sylibrd 258 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)))
5958adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)))
601, 55latmcl 18073 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
6111, 21, 40, 60syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
621, 3, 4, 5cvrat2 37370 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑋 (𝑃 𝑄)) ∈ 𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄))) → (𝑋 (𝑃 𝑄)) ∈ 𝐴)
63623expia 1119 . . . . . 6 ((𝐾 ∈ HL ∧ ((𝑋 (𝑃 𝑄)) ∈ 𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6436, 61, 12, 15, 63syl13anc 1370 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6564expdimp 452 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6659, 65syld 47 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6766exp4b 430 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (¬ 𝑄 𝑋 → (𝑃 (𝑋 𝑄) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))))
68673impd 1346 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  ccvr 37203  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  cvrat4  37384  2atjm  37386  1cvrat  37417  2llnma1b  37727
  Copyright terms: Public domain W3C validator