Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat3 Structured version   Visualization version   GIF version

Theorem cvrat3 39424
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 32358 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat3.b 𝐵 = (Base‘𝐾)
cvrat3.l = (le‘𝐾)
cvrat3.j = (join‘𝐾)
cvrat3.m = (meet‘𝐾)
cvrat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))

Proof of Theorem cvrat3
StepHypRef Expression
1 cvrat3.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
2 cvrat3.l . . . . . . . . . . . 12 = (le‘𝐾)
3 cvrat3.j . . . . . . . . . . . 12 = (join‘𝐾)
4 eqid 2729 . . . . . . . . . . . 12 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5 cvrat3.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5cvr1 39392 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (¬ 𝑄 𝑋𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
763adant3r2 1184 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
87biimpa 476 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ¬ 𝑄 𝑋) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑄))
98adantrr 717 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑄))
10 hllat 39344 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1110adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
12 simpr2 1196 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
131, 5atbase 39270 . . . . . . . . . . . . . . . . . 18 (𝑃𝐴𝑃𝐵)
1412, 13syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
15 simpr3 1197 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
161, 5atbase 39270 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄𝐵)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
181, 3latjcom 18371 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
1911, 14, 17, 18syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
2019oveq2d 7369 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) = (𝑋 (𝑄 𝑃)))
21 simpr1 1195 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
221, 3latjass 18407 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑄𝐵𝑃𝐵)) → ((𝑋 𝑄) 𝑃) = (𝑋 (𝑄 𝑃)))
2311, 21, 17, 14, 22syl13anc 1374 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 𝑄) 𝑃) = (𝑋 (𝑄 𝑃)))
2420, 23eqtr4d 2767 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) = ((𝑋 𝑄) 𝑃))
2524adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) = ((𝑋 𝑄) 𝑃))
261, 3latjcl 18363 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
2711, 21, 17, 26syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 𝑄) ∈ 𝐵)
281, 2, 3latjlej2 18378 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑋 𝑄) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵)) → (𝑃 (𝑋 𝑄) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄))))
2911, 14, 27, 27, 28syl13anc 1374 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 (𝑋 𝑄) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄))))
3029imp 406 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄)))
3125, 30eqbrtrd 5117 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ((𝑋 𝑄) (𝑋 𝑄)))
321, 3latjidm 18386 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑋 𝑄) ∈ 𝐵) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3311, 27, 32syl2anc 584 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3433adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3531, 34breqtrd 5121 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) (𝑋 𝑄))
36 simpl 482 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
372, 3, 5hlatlej2 39357 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
3836, 12, 15, 37syl3anc 1373 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄 (𝑃 𝑄))
391, 3latjcl 18363 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
4011, 14, 17, 39syl3anc 1373 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
411, 2, 3latjlej2 18378 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑄𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵)) → (𝑄 (𝑃 𝑄) → (𝑋 𝑄) (𝑋 (𝑃 𝑄))))
4211, 17, 40, 21, 41syl13anc 1374 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 (𝑃 𝑄) → (𝑋 𝑄) (𝑋 (𝑃 𝑄))))
4338, 42mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 𝑄) (𝑋 (𝑃 𝑄)))
4443adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑄) (𝑋 (𝑃 𝑄)))
451, 3latjcl 18363 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
4611, 21, 40, 45syl3anc 1373 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
471, 2latasymb 18366 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑋 (𝑃 𝑄)) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
4811, 46, 27, 47syl3anc 1373 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
4948adantr 480 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
5035, 44, 49mpbi2and 712 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) = (𝑋 𝑄))
5150breq2d 5107 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
5251adantrl 716 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → (𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
539, 52mpbird 257 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)))
5453ex 412 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
55 cvrat3.m . . . . . . . 8 = (meet‘𝐾)
561, 3, 55, 4cvrexch 39402 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
5736, 21, 40, 56syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
5854, 57sylibrd 259 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)))
5958adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)))
601, 55latmcl 18364 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
6111, 21, 40, 60syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
621, 3, 4, 5cvrat2 39411 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑋 (𝑃 𝑄)) ∈ 𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄))) → (𝑋 (𝑃 𝑄)) ∈ 𝐴)
63623expia 1121 . . . . . 6 ((𝐾 ∈ HL ∧ ((𝑋 (𝑃 𝑄)) ∈ 𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6436, 61, 12, 15, 63syl13anc 1374 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6564expdimp 452 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6659, 65syld 47 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6766exp4b 430 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (¬ 𝑄 𝑋 → (𝑃 (𝑋 𝑄) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))))
68673impd 1349 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  Latclat 18355  ccvr 39243  Atomscatm 39244  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  cvrat4  39425  2atjm  39427  1cvrat  39458  2llnma1b  39768
  Copyright terms: Public domain W3C validator