Proof of Theorem cvrat3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvrat3.b | . . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | cvrat3.l | . . . . . . . . . . . 12
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | cvrat3.j | . . . . . . . . . . . 12
⊢  ∨ =
(join‘𝐾) | 
| 4 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) | 
| 5 |  | cvrat3.a | . . . . . . . . . . . 12
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 | 1, 2, 3, 4, 5 | cvr1 39413 | . . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (¬ 𝑄 ≤ 𝑋 ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄))) | 
| 7 | 6 | 3adant3r2 1183 | . . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (¬ 𝑄 ≤ 𝑋 ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄))) | 
| 8 | 7 | biimpa 476 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ ¬ 𝑄 ≤ 𝑋) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄)) | 
| 9 | 8 | adantrr 717 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄)) | 
| 10 |  | hllat 39365 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 11 | 10 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ Lat) | 
| 12 |  | simpr2 1195 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | 
| 13 | 1, 5 | atbase 39291 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 14 | 12, 13 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑃 ∈ 𝐵) | 
| 15 |  | simpr3 1196 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | 
| 16 | 1, 5 | atbase 39291 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) | 
| 17 | 15, 16 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ∈ 𝐵) | 
| 18 | 1, 3 | latjcom 18493 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) | 
| 19 | 11, 14, 17, 18 | syl3anc 1372 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) | 
| 20 | 19 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ (𝑄 ∨ 𝑃))) | 
| 21 |  | simpr1 1194 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | 
| 22 | 1, 3 | latjass 18529 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵)) → ((𝑋 ∨ 𝑄) ∨ 𝑃) = (𝑋 ∨ (𝑄 ∨ 𝑃))) | 
| 23 | 11, 21, 17, 14, 22 | syl13anc 1373 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ∨ 𝑄) ∨ 𝑃) = (𝑋 ∨ (𝑄 ∨ 𝑃))) | 
| 24 | 20, 23 | eqtr4d 2779 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) = ((𝑋 ∨ 𝑄) ∨ 𝑃)) | 
| 25 | 24 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) = ((𝑋 ∨ 𝑄) ∨ 𝑃)) | 
| 26 | 1, 3 | latjcl 18485 | . . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑋 ∨ 𝑄) ∈ 𝐵) | 
| 27 | 11, 21, 17, 26 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ 𝑄) ∈ 𝐵) | 
| 28 | 1, 2, 3 | latjlej2 18500 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵)) → (𝑃 ≤ (𝑋 ∨ 𝑄) → ((𝑋 ∨ 𝑄) ∨ 𝑃) ≤ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)))) | 
| 29 | 11, 14, 27, 27, 28 | syl13anc 1373 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ≤ (𝑋 ∨ 𝑄) → ((𝑋 ∨ 𝑄) ∨ 𝑃) ≤ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)))) | 
| 30 | 29 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋 ∨ 𝑄) ∨ 𝑃) ≤ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄))) | 
| 31 | 25, 30 | eqbrtrd 5164 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄))) | 
| 32 | 1, 3 | latjidm 18508 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ 𝑄) ∈ 𝐵) → ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄)) | 
| 33 | 11, 27, 32 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄)) | 
| 34 | 33 | adantr 480 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → ((𝑋 ∨ 𝑄) ∨ (𝑋 ∨ 𝑄)) = (𝑋 ∨ 𝑄)) | 
| 35 | 31, 34 | breqtrd 5168 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ (𝑋 ∨ 𝑄)) | 
| 36 |  | simpl 482 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐾 ∈ HL) | 
| 37 | 2, 3, 5 | hlatlej2 39378 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) | 
| 38 | 36, 12, 15, 37 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑄 ≤ (𝑃 ∨ 𝑄)) | 
| 39 | 1, 3 | latjcl 18485 | . . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) | 
| 40 | 11, 14, 17, 39 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ 𝐵) | 
| 41 | 1, 2, 3 | latjlej2 18500 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑄 ≤ (𝑃 ∨ 𝑄) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄)))) | 
| 42 | 11, 17, 40, 21, 41 | syl13anc 1373 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑄 ≤ (𝑃 ∨ 𝑄) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄)))) | 
| 43 | 38, 42 | mpd 15 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) | 
| 44 | 43 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) | 
| 45 | 1, 3 | latjcl 18485 | . . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) | 
| 46 | 11, 21, 40, 45 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵) | 
| 47 | 1, 2 | latasymb 18488 | . . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∨ (𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ (𝑋 ∨ 𝑄) ∈ 𝐵) → (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄))) | 
| 48 | 11, 46, 27, 47 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄))) | 
| 49 | 48 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (((𝑋 ∨ (𝑃 ∨ 𝑄)) ≤ (𝑋 ∨ 𝑄) ∧ (𝑋 ∨ 𝑄) ≤ (𝑋 ∨ (𝑃 ∨ 𝑄))) ↔ (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄))) | 
| 50 | 35, 44, 49 | mpbi2and 712 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∨ (𝑃 ∨ 𝑄)) = (𝑋 ∨ 𝑄)) | 
| 51 | 50 | breq2d 5154 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄))) | 
| 52 | 51 | adantrl 716 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → (𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ 𝑄))) | 
| 53 | 9, 52 | mpbird 257 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ (¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄))) | 
| 54 | 53 | ex 412 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → 𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)))) | 
| 55 |  | cvrat3.m | . . . . . . . 8
⊢  ∧ =
(meet‘𝐾) | 
| 56 | 1, 3, 55, 4 | cvrexch 39423 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → ((𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)))) | 
| 57 | 36, 21, 40, 56 | syl3anc 1372 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 ∨ (𝑃 ∨ 𝑄)))) | 
| 58 | 54, 57 | sylibrd 259 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) | 
| 59 | 58 | adantr 480 | . . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → ((¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) | 
| 60 | 1, 55 | latmcl 18486 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑄) ∈ 𝐵) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐵) | 
| 61 | 11, 21, 40, 60 | syl3anc 1372 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐵) | 
| 62 | 1, 3, 4, 5 | cvrat2 39432 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄))) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) | 
| 63 | 62 | 3expia 1121 | . . . . . 6
⊢ ((𝐾 ∈ HL ∧ ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) | 
| 64 | 36, 61, 12, 15, 63 | syl13anc 1373 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ (𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) | 
| 65 | 64 | expdimp 452 | . . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → ((𝑋 ∧ (𝑃 ∨ 𝑄))( ⋖ ‘𝐾)(𝑃 ∨ 𝑄) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) | 
| 66 | 59, 65 | syld 47 | . . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) ∧ 𝑃 ≠ 𝑄) → ((¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) | 
| 67 | 66 | exp4b 430 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ≠ 𝑄 → (¬ 𝑄 ≤ 𝑋 → (𝑃 ≤ (𝑋 ∨ 𝑄) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)))) | 
| 68 | 67 | 3impd 1348 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ (𝑋 ∨ 𝑄)) → (𝑋 ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴)) |