Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrat3 Structured version   Visualization version   GIF version

Theorem cvrat3 37456
Description: A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 30758 analog.) (Contributed by NM, 30-Nov-2011.)
Hypotheses
Ref Expression
cvrat3.b 𝐵 = (Base‘𝐾)
cvrat3.l = (le‘𝐾)
cvrat3.j = (join‘𝐾)
cvrat3.m = (meet‘𝐾)
cvrat3.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrat3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))

Proof of Theorem cvrat3
StepHypRef Expression
1 cvrat3.b . . . . . . . . . . . 12 𝐵 = (Base‘𝐾)
2 cvrat3.l . . . . . . . . . . . 12 = (le‘𝐾)
3 cvrat3.j . . . . . . . . . . . 12 = (join‘𝐾)
4 eqid 2738 . . . . . . . . . . . 12 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5 cvrat3.a . . . . . . . . . . . 12 𝐴 = (Atoms‘𝐾)
61, 2, 3, 4, 5cvr1 37424 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (¬ 𝑄 𝑋𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
763adant3r2 1182 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (¬ 𝑄 𝑋𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
87biimpa 477 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ ¬ 𝑄 𝑋) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑄))
98adantrr 714 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 𝑄))
10 hllat 37377 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1110adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ Lat)
12 simpr2 1194 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐴)
131, 5atbase 37303 . . . . . . . . . . . . . . . . . 18 (𝑃𝐴𝑃𝐵)
1412, 13syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑃𝐵)
15 simpr3 1195 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐴)
161, 5atbase 37303 . . . . . . . . . . . . . . . . . 18 (𝑄𝐴𝑄𝐵)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄𝐵)
181, 3latjcom 18165 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) = (𝑄 𝑃))
1911, 14, 17, 18syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) = (𝑄 𝑃))
2019oveq2d 7291 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) = (𝑋 (𝑄 𝑃)))
21 simpr1 1193 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
221, 3latjass 18201 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑄𝐵𝑃𝐵)) → ((𝑋 𝑄) 𝑃) = (𝑋 (𝑄 𝑃)))
2311, 21, 17, 14, 22syl13anc 1371 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 𝑄) 𝑃) = (𝑋 (𝑄 𝑃)))
2420, 23eqtr4d 2781 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) = ((𝑋 𝑄) 𝑃))
2524adantr 481 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) = ((𝑋 𝑄) 𝑃))
261, 3latjcl 18157 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
2711, 21, 17, 26syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 𝑄) ∈ 𝐵)
281, 2, 3latjlej2 18172 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ (𝑃𝐵 ∧ (𝑋 𝑄) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵)) → (𝑃 (𝑋 𝑄) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄))))
2911, 14, 27, 27, 28syl13anc 1371 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 (𝑋 𝑄) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄))))
3029imp 407 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 𝑄) 𝑃) ((𝑋 𝑄) (𝑋 𝑄)))
3125, 30eqbrtrd 5096 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ((𝑋 𝑄) (𝑋 𝑄)))
321, 3latjidm 18180 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑋 𝑄) ∈ 𝐵) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3311, 27, 32syl2anc 584 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3433adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → ((𝑋 𝑄) (𝑋 𝑄)) = (𝑋 𝑄))
3531, 34breqtrd 5100 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) (𝑋 𝑄))
36 simpl 483 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ HL)
372, 3, 5hlatlej2 37390 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
3836, 12, 15, 37syl3anc 1370 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑄 (𝑃 𝑄))
391, 3latjcl 18157 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
4011, 14, 17, 39syl3anc 1370 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃 𝑄) ∈ 𝐵)
411, 2, 3latjlej2 18172 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ (𝑄𝐵 ∧ (𝑃 𝑄) ∈ 𝐵𝑋𝐵)) → (𝑄 (𝑃 𝑄) → (𝑋 𝑄) (𝑋 (𝑃 𝑄))))
4211, 17, 40, 21, 41syl13anc 1371 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑄 (𝑃 𝑄) → (𝑋 𝑄) (𝑋 (𝑃 𝑄))))
4338, 42mpd 15 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 𝑄) (𝑋 (𝑃 𝑄)))
4443adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 𝑄) (𝑋 (𝑃 𝑄)))
451, 3latjcl 18157 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
4611, 21, 40, 45syl3anc 1370 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
471, 2latasymb 18160 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑋 (𝑃 𝑄)) ∈ 𝐵 ∧ (𝑋 𝑄) ∈ 𝐵) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
4811, 46, 27, 47syl3anc 1370 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
4948adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (((𝑋 (𝑃 𝑄)) (𝑋 𝑄) ∧ (𝑋 𝑄) (𝑋 (𝑃 𝑄))) ↔ (𝑋 (𝑃 𝑄)) = (𝑋 𝑄)))
5035, 44, 49mpbi2and 709 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) = (𝑋 𝑄))
5150breq2d 5086 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃 (𝑋 𝑄)) → (𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
5251adantrl 713 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → (𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 𝑄)))
539, 52mpbird 256 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (¬ 𝑄 𝑋𝑃 (𝑋 𝑄))) → 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄)))
5453ex 413 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
55 cvrat3.m . . . . . . . 8 = (meet‘𝐾)
561, 3, 55, 4cvrexch 37434 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
5736, 21, 40, 56syl3anc 1370 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) ↔ 𝑋( ⋖ ‘𝐾)(𝑋 (𝑃 𝑄))))
5854, 57sylibrd 258 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)))
5958adantr 481 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)))
601, 55latmcl 18158 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
6111, 21, 40, 60syl3anc 1370 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋 (𝑃 𝑄)) ∈ 𝐵)
621, 3, 4, 5cvrat2 37443 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑋 (𝑃 𝑄)) ∈ 𝐵𝑃𝐴𝑄𝐴) ∧ (𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄))) → (𝑋 (𝑃 𝑄)) ∈ 𝐴)
63623expia 1120 . . . . . 6 ((𝐾 ∈ HL ∧ ((𝑋 (𝑃 𝑄)) ∈ 𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6436, 61, 12, 15, 63syl13anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ (𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6564expdimp 453 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((𝑋 (𝑃 𝑄))( ⋖ ‘𝐾)(𝑃 𝑄) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6659, 65syld 47 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑃𝑄) → ((¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
6766exp4b 431 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑃𝑄 → (¬ 𝑄 𝑋 → (𝑃 (𝑋 𝑄) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))))
68673impd 1347 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑄 𝑋𝑃 (𝑋 𝑄)) → (𝑋 (𝑃 𝑄)) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  ccvr 37276  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  cvrat4  37457  2atjm  37459  1cvrat  37490  2llnma1b  37800
  Copyright terms: Public domain W3C validator