![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap11 | Structured version Visualization version GIF version |
Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) |
Ref | Expression |
---|---|
pmap11.b | β’ π΅ = (BaseβπΎ) |
pmap11.m | β’ π = (pmapβπΎ) |
Ref | Expression |
---|---|
pmap11 | β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β ((πβπ) = (πβπ) β π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3998 | . 2 β’ ((πβπ) = (πβπ) β ((πβπ) β (πβπ) β§ (πβπ) β (πβπ))) | |
2 | hllat 38538 | . . . 4 β’ (πΎ β HL β πΎ β Lat) | |
3 | pmap11.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
4 | eqid 2730 | . . . . 5 β’ (leβπΎ) = (leβπΎ) | |
5 | 3, 4 | latasymb 18401 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β ((π(leβπΎ)π β§ π(leβπΎ)π) β π = π)) |
6 | 2, 5 | syl3an1 1161 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β ((π(leβπΎ)π β§ π(leβπΎ)π) β π = π)) |
7 | pmap11.m | . . . . 5 β’ π = (pmapβπΎ) | |
8 | 3, 4, 7 | pmaple 38937 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (πβπ) β (πβπ))) |
9 | 3, 4, 7 | pmaple 38937 | . . . . 5 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (πβπ) β (πβπ))) |
10 | 9 | 3com23 1124 | . . . 4 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π(leβπΎ)π β (πβπ) β (πβπ))) |
11 | 8, 10 | anbi12d 629 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β ((π(leβπΎ)π β§ π(leβπΎ)π) β ((πβπ) β (πβπ) β§ (πβπ) β (πβπ)))) |
12 | 6, 11 | bitr3d 280 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β (π = π β ((πβπ) β (πβπ) β§ (πβπ) β (πβπ)))) |
13 | 1, 12 | bitr4id 289 | 1 β’ ((πΎ β HL β§ π β π΅ β§ π β π΅) β ((πβπ) = (πβπ) β π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wss 3949 class class class wbr 5149 βcfv 6544 Basecbs 17150 lecple 17210 Latclat 18390 HLchlt 38525 pmapcpmap 38673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-proset 18254 df-poset 18272 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-lat 18391 df-clat 18458 df-oposet 38351 df-ol 38353 df-oml 38354 df-covers 38441 df-ats 38442 df-atl 38473 df-cvlat 38497 df-hlat 38526 df-pmap 38680 |
This theorem is referenced by: pmapeq0 38942 isline3 38952 lncvrelatN 38957 |
Copyright terms: Public domain | W3C validator |