Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmap11 Structured version   Visualization version   GIF version

Theorem pmap11 39884
Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
pmap11.b 𝐵 = (Base‘𝐾)
pmap11.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmap11 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) = (𝑀𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem pmap11
StepHypRef Expression
1 eqss 3946 . 2 ((𝑀𝑋) = (𝑀𝑌) ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋)))
2 hllat 39485 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3 pmap11.b . . . . 5 𝐵 = (Base‘𝐾)
4 eqid 2733 . . . . 5 (le‘𝐾) = (le‘𝐾)
53, 4latasymb 18352 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
62, 5syl3an1 1163 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌))
7 pmap11.m . . . . 5 𝑀 = (pmap‘𝐾)
83, 4, 7pmaple 39883 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑀𝑋) ⊆ (𝑀𝑌)))
93, 4, 7pmaple 39883 . . . . 5 ((𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵) → (𝑌(le‘𝐾)𝑋 ↔ (𝑀𝑌) ⊆ (𝑀𝑋)))
1093com23 1126 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑌(le‘𝐾)𝑋 ↔ (𝑀𝑌) ⊆ (𝑀𝑋)))
118, 10anbi12d 632 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑋) ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋))))
126, 11bitr3d 281 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 = 𝑌 ↔ ((𝑀𝑋) ⊆ (𝑀𝑌) ∧ (𝑀𝑌) ⊆ (𝑀𝑋))))
131, 12bitr4id 290 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑀𝑋) = (𝑀𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wss 3898   class class class wbr 5095  cfv 6488  Basecbs 17124  lecple 17172  Latclat 18341  HLchlt 39472  pmapcpmap 39619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-proset 18204  df-poset 18223  df-plt 18238  df-lub 18254  df-glb 18255  df-join 18256  df-meet 18257  df-p0 18333  df-lat 18342  df-clat 18409  df-oposet 39298  df-ol 39300  df-oml 39301  df-covers 39388  df-ats 39389  df-atl 39420  df-cvlat 39444  df-hlat 39473  df-pmap 39626
This theorem is referenced by:  pmapeq0  39888  isline3  39898  lncvrelatN  39903
  Copyright terms: Public domain W3C validator