| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmap11 | Structured version Visualization version GIF version | ||
| Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| pmap11.b | ⊢ 𝐵 = (Base‘𝐾) |
| pmap11.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmap11 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘𝑌) ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3962 | . 2 ⊢ ((𝑀‘𝑋) = (𝑀‘𝑌) ↔ ((𝑀‘𝑋) ⊆ (𝑀‘𝑌) ∧ (𝑀‘𝑌) ⊆ (𝑀‘𝑋))) | |
| 2 | hllat 39356 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 3 | pmap11.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | 3, 4 | latasymb 18401 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ 𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌)) |
| 6 | 2, 5 | syl3an1 1163 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ 𝑌(le‘𝐾)𝑋) ↔ 𝑋 = 𝑌)) |
| 7 | pmap11.m | . . . . 5 ⊢ 𝑀 = (pmap‘𝐾) | |
| 8 | 3, 4, 7 | pmaple 39755 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(le‘𝐾)𝑌 ↔ (𝑀‘𝑋) ⊆ (𝑀‘𝑌))) |
| 9 | 3, 4, 7 | pmaple 39755 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ (𝑀‘𝑌) ⊆ (𝑀‘𝑋))) |
| 10 | 9 | 3com23 1126 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌(le‘𝐾)𝑋 ↔ (𝑀‘𝑌) ⊆ (𝑀‘𝑋))) |
| 11 | 8, 10 | anbi12d 632 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(le‘𝐾)𝑌 ∧ 𝑌(le‘𝐾)𝑋) ↔ ((𝑀‘𝑋) ⊆ (𝑀‘𝑌) ∧ (𝑀‘𝑌) ⊆ (𝑀‘𝑋)))) |
| 12 | 6, 11 | bitr3d 281 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ↔ ((𝑀‘𝑋) ⊆ (𝑀‘𝑌) ∧ (𝑀‘𝑌) ⊆ (𝑀‘𝑋)))) |
| 13 | 1, 12 | bitr4id 290 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑀‘𝑋) = (𝑀‘𝑌) ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Latclat 18390 HLchlt 39343 pmapcpmap 39491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-pmap 39498 |
| This theorem is referenced by: pmapeq0 39760 isline3 39770 lncvrelatN 39775 |
| Copyright terms: Public domain | W3C validator |