Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia11N Structured version   Visualization version   GIF version

Theorem dia11N 39561
Description: The partial isomorphism A for a lattice 𝐾 is one-to-one in the region under co-atom π‘Š. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 25-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia11.b 𝐡 = (Baseβ€˜πΎ)
dia11.l ≀ = (leβ€˜πΎ)
dia11.h 𝐻 = (LHypβ€˜πΎ)
dia11.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dia11N (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))

Proof of Theorem dia11N
StepHypRef Expression
1 eqss 3963 . 2 ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)))
2 dia11.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 dia11.l . . . . 5 ≀ = (leβ€˜πΎ)
4 dia11.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
5 dia11.i . . . . 5 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
62, 3, 4, 5diaord 39560 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))
72, 3, 4, 5diaord 39560 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ ((πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹) ↔ π‘Œ ≀ 𝑋))
873com23 1127 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹) ↔ π‘Œ ≀ 𝑋))
96, 8anbi12d 632 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)) ↔ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋)))
10 simp1l 1198 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝐾 ∈ HL)
1110hllatd 37876 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
12 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝑋 ∈ 𝐡)
13 simp3l 1202 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ π‘Œ ∈ 𝐡)
142, 3latasymb 18339 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) ↔ 𝑋 = π‘Œ))
1511, 12, 13, 14syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) ↔ 𝑋 = π‘Œ))
169, 15bitrd 279 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)) ↔ 𝑋 = π‘Œ))
171, 16bitrid 283 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   βŠ† wss 3914   class class class wbr 5109  β€˜cfv 6500  Basecbs 17091  lecple 17148  Latclat 18328  HLchlt 37862  LHypclh 38497  DIsoAcdia 39541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-riotaBAD 37465
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-undef 8208  df-map 8773  df-proset 18192  df-poset 18210  df-plt 18227  df-lub 18243  df-glb 18244  df-join 18245  df-meet 18246  df-p0 18322  df-p1 18323  df-lat 18329  df-clat 18396  df-oposet 37688  df-ol 37690  df-oml 37691  df-covers 37778  df-ats 37779  df-atl 37810  df-cvlat 37834  df-hlat 37863  df-llines 38011  df-lplanes 38012  df-lvols 38013  df-lines 38014  df-psubsp 38016  df-pmap 38017  df-padd 38309  df-lhyp 38501  df-laut 38502  df-ldil 38617  df-ltrn 38618  df-trl 38672  df-disoa 39542
This theorem is referenced by:  diaf11N  39562
  Copyright terms: Public domain W3C validator