Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia11N Structured version   Visualization version   GIF version

Theorem dia11N 40423
Description: The partial isomorphism A for a lattice 𝐾 is one-to-one in the region under co-atom π‘Š. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 25-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia11.b 𝐡 = (Baseβ€˜πΎ)
dia11.l ≀ = (leβ€˜πΎ)
dia11.h 𝐻 = (LHypβ€˜πΎ)
dia11.i 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dia11N (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))

Proof of Theorem dia11N
StepHypRef Expression
1 eqss 3990 . 2 ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)))
2 dia11.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 dia11.l . . . . 5 ≀ = (leβ€˜πΎ)
4 dia11.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
5 dia11.i . . . . 5 𝐼 = ((DIsoAβ€˜πΎ)β€˜π‘Š)
62, 3, 4, 5diaord 40422 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ↔ 𝑋 ≀ π‘Œ))
72, 3, 4, 5diaord 40422 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š)) β†’ ((πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹) ↔ π‘Œ ≀ 𝑋))
873com23 1123 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹) ↔ π‘Œ ≀ 𝑋))
96, 8anbi12d 630 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)) ↔ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋)))
10 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝐾 ∈ HL)
1110hllatd 38738 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
12 simp2l 1196 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ 𝑋 ∈ 𝐡)
13 simp3l 1198 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ π‘Œ ∈ 𝐡)
142, 3latasymb 18403 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) ↔ 𝑋 = π‘Œ))
1511, 12, 13, 14syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑋) ↔ 𝑋 = π‘Œ))
169, 15bitrd 279 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ (((πΌβ€˜π‘‹) βŠ† (πΌβ€˜π‘Œ) ∧ (πΌβ€˜π‘Œ) βŠ† (πΌβ€˜π‘‹)) ↔ 𝑋 = π‘Œ))
171, 16bitrid 283 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ 𝑋 ≀ π‘Š) ∧ (π‘Œ ∈ 𝐡 ∧ π‘Œ ≀ π‘Š)) β†’ ((πΌβ€˜π‘‹) = (πΌβ€˜π‘Œ) ↔ 𝑋 = π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   βŠ† wss 3941   class class class wbr 5139  β€˜cfv 6534  Basecbs 17149  lecple 17209  Latclat 18392  HLchlt 38724  LHypclh 39359  DIsoAcdia 40403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-riotaBAD 38327
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-undef 8254  df-map 8819  df-proset 18256  df-poset 18274  df-plt 18291  df-lub 18307  df-glb 18308  df-join 18309  df-meet 18310  df-p0 18386  df-p1 18387  df-lat 18393  df-clat 18460  df-oposet 38550  df-ol 38552  df-oml 38553  df-covers 38640  df-ats 38641  df-atl 38672  df-cvlat 38696  df-hlat 38725  df-llines 38873  df-lplanes 38874  df-lvols 38875  df-lines 38876  df-psubsp 38878  df-pmap 38879  df-padd 39171  df-lhyp 39363  df-laut 39364  df-ldil 39479  df-ltrn 39480  df-trl 39534  df-disoa 40404
This theorem is referenced by:  diaf11N  40424
  Copyright terms: Public domain W3C validator