![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia11N | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice πΎ is one-to-one in the region under co-atom π. Part of Lemma M of [Crawley] p. 120 line 28. (Contributed by NM, 25-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dia11.b | β’ π΅ = (BaseβπΎ) |
dia11.l | β’ β€ = (leβπΎ) |
dia11.h | β’ π» = (LHypβπΎ) |
dia11.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
Ref | Expression |
---|---|
dia11N | β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((πΌβπ) = (πΌβπ) β π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3997 | . 2 β’ ((πΌβπ) = (πΌβπ) β ((πΌβπ) β (πΌβπ) β§ (πΌβπ) β (πΌβπ))) | |
2 | dia11.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
3 | dia11.l | . . . . 5 β’ β€ = (leβπΎ) | |
4 | dia11.h | . . . . 5 β’ π» = (LHypβπΎ) | |
5 | dia11.i | . . . . 5 β’ πΌ = ((DIsoAβπΎ)βπ) | |
6 | 2, 3, 4, 5 | diaord 39913 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((πΌβπ) β (πΌβπ) β π β€ π)) |
7 | 2, 3, 4, 5 | diaord 39913 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((πΌβπ) β (πΌβπ) β π β€ π)) |
8 | 7 | 3com23 1126 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((πΌβπ) β (πΌβπ) β π β€ π)) |
9 | 6, 8 | anbi12d 631 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β (((πΌβπ) β (πΌβπ) β§ (πΌβπ) β (πΌβπ)) β (π β€ π β§ π β€ π))) |
10 | simp1l 1197 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β πΎ β HL) | |
11 | 10 | hllatd 38229 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β πΎ β Lat) |
12 | simp2l 1199 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β π β π΅) | |
13 | simp3l 1201 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β π β π΅) | |
14 | 2, 3 | latasymb 18394 | . . . 4 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β ((π β€ π β§ π β€ π) β π = π)) |
15 | 11, 12, 13, 14 | syl3anc 1371 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((π β€ π β§ π β€ π) β π = π)) |
16 | 9, 15 | bitrd 278 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β (((πΌβπ) β (πΌβπ) β§ (πΌβπ) β (πΌβπ)) β π = π)) |
17 | 1, 16 | bitrid 282 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π) β§ (π β π΅ β§ π β€ π)) β ((πΌβπ) = (πΌβπ) β π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wss 3948 class class class wbr 5148 βcfv 6543 Basecbs 17143 lecple 17203 Latclat 18383 HLchlt 38215 LHypclh 38850 DIsoAcdia 39894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-riotaBAD 37818 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-undef 8257 df-map 8821 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-llines 38364 df-lplanes 38365 df-lvols 38366 df-lines 38367 df-psubsp 38369 df-pmap 38370 df-padd 38662 df-lhyp 38854 df-laut 38855 df-ldil 38970 df-ltrn 38971 df-trl 39025 df-disoa 39895 |
This theorem is referenced by: diaf11N 39915 |
Copyright terms: Public domain | W3C validator |