| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dib11N | Structured version Visualization version GIF version | ||
| Description: The isomorphism B for a lattice 𝐾 is one-to-one in the region under co-atom 𝑊. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dib11.b | ⊢ 𝐵 = (Base‘𝐾) |
| dib11.l | ⊢ ≤ = (le‘𝐾) |
| dib11.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dib11.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dib11N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3959 | . 2 ⊢ ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ (𝐼‘𝑌) ⊆ (𝐼‘𝑋))) | |
| 2 | dib11.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | dib11.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 4 | dib11.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | dib11.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 6 | 2, 3, 4, 5 | dibord 41146 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ↔ 𝑋 ≤ 𝑌)) |
| 7 | 2, 3, 4, 5 | dibord 41146 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((𝐼‘𝑌) ⊆ (𝐼‘𝑋) ↔ 𝑌 ≤ 𝑋)) |
| 8 | 7 | 3com23 1126 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑌) ⊆ (𝐼‘𝑋) ↔ 𝑌 ≤ 𝑋)) |
| 9 | 6, 8 | anbi12d 632 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ (𝐼‘𝑌) ⊆ (𝐼‘𝑋)) ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
| 10 | simp1l 1198 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ HL) | |
| 11 | 10 | hllatd 39350 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ Lat) |
| 12 | simp2l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
| 13 | simp3l 1202 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝐵) | |
| 14 | 2, 3 | latasymb 18383 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 15 | 11, 12, 13, 14 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 16 | 9, 15 | bitrd 279 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (((𝐼‘𝑋) ⊆ (𝐼‘𝑌) ∧ (𝐼‘𝑌) ⊆ (𝐼‘𝑋)) ↔ 𝑋 = 𝑌)) |
| 17 | 1, 16 | bitrid 283 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → ((𝐼‘𝑋) = (𝐼‘𝑌) ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 lecple 17203 Latclat 18372 HLchlt 39336 LHypclh 39971 DIsoBcdib 41125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-riotaBAD 38939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-undef 8229 df-map 8778 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-llines 39485 df-lplanes 39486 df-lvols 39487 df-lines 39488 df-psubsp 39490 df-pmap 39491 df-padd 39783 df-lhyp 39975 df-laut 39976 df-ldil 40091 df-ltrn 40092 df-trl 40146 df-disoa 41016 df-dib 41126 |
| This theorem is referenced by: dibf11N 41148 |
| Copyright terms: Public domain | W3C validator |