| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version | ||
| Description: Deduce equality from lattice ordering. (eqssd 3964 analog.) (Contributed by NM, 18-Nov-2011.) |
| Ref | Expression |
|---|---|
| latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
| latasymd.l | ⊢ ≤ = (le‘𝐾) |
| latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
| 3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 8 | 6, 7 | latasymb 18401 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 9 | 3, 4, 5, 8 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 10 | 1, 2, 9 | mpbi2and 712 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-proset 18255 df-poset 18274 df-lat 18391 |
| This theorem is referenced by: latjidm 18421 latmidm 18433 latjass 18442 oldmm1 39210 olj01 39218 olm01 39229 cvlcvr1 39332 llnmlplnN 39533 2llnjaN 39560 2lplnja 39613 cdlema1N 39785 hlmod1i 39850 lautj 40087 lautm 40088 cdleme19a 40297 cdleme28b 40365 trljco 40734 dochvalr 41351 |
| Copyright terms: Public domain | W3C validator |