MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasymd Structured version   Visualization version   GIF version

Theorem latasymd 18490
Description: Deduce equality from lattice ordering. (eqssd 4001 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
latasymd.b 𝐵 = (Base‘𝐾)
latasymd.l = (le‘𝐾)
latasymd.3 (𝜑𝐾 ∈ Lat)
latasymd.4 (𝜑𝑋𝐵)
latasymd.5 (𝜑𝑌𝐵)
latasymd.6 (𝜑𝑋 𝑌)
latasymd.7 (𝜑𝑌 𝑋)
Assertion
Ref Expression
latasymd (𝜑𝑋 = 𝑌)

Proof of Theorem latasymd
StepHypRef Expression
1 latasymd.6 . 2 (𝜑𝑋 𝑌)
2 latasymd.7 . 2 (𝜑𝑌 𝑋)
3 latasymd.3 . . 3 (𝜑𝐾 ∈ Lat)
4 latasymd.4 . . 3 (𝜑𝑋𝐵)
5 latasymd.5 . . 3 (𝜑𝑌𝐵)
6 latasymd.b . . . 4 𝐵 = (Base‘𝐾)
7 latasymd.l . . . 4 = (le‘𝐾)
86, 7latasymb 18487 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
93, 4, 5, 8syl3anc 1373 . 2 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
101, 2, 9mpbi2and 712 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  Basecbs 17247  lecple 17304  Latclat 18476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-dm 5695  df-iota 6514  df-fv 6569  df-proset 18340  df-poset 18359  df-lat 18477
This theorem is referenced by:  latjidm  18507  latmidm  18519  latjass  18528  oldmm1  39218  olj01  39226  olm01  39237  cvlcvr1  39340  llnmlplnN  39541  2llnjaN  39568  2lplnja  39621  cdlema1N  39793  hlmod1i  39858  lautj  40095  lautm  40096  cdleme19a  40305  cdleme28b  40373  trljco  40742  dochvalr  41359
  Copyright terms: Public domain W3C validator