| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version | ||
| Description: Deduce equality from lattice ordering. (eqssd 3981 analog.) (Contributed by NM, 18-Nov-2011.) |
| Ref | Expression |
|---|---|
| latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
| latasymd.l | ⊢ ≤ = (le‘𝐾) |
| latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
| 3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 8 | 6, 7 | latasymb 18457 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 9 | 3, 4, 5, 8 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 10 | 1, 2, 9 | mpbi2and 712 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 lecple 17283 Latclat 18446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-dm 5669 df-iota 6489 df-fv 6544 df-proset 18311 df-poset 18330 df-lat 18447 |
| This theorem is referenced by: latjidm 18477 latmidm 18489 latjass 18498 oldmm1 39240 olj01 39248 olm01 39259 cvlcvr1 39362 llnmlplnN 39563 2llnjaN 39590 2lplnja 39643 cdlema1N 39815 hlmod1i 39880 lautj 40117 lautm 40118 cdleme19a 40327 cdleme28b 40395 trljco 40764 dochvalr 41381 |
| Copyright terms: Public domain | W3C validator |