Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version |
Description: Deduce equality from lattice ordering. (eqssd 3938 analog.) (Contributed by NM, 18-Nov-2011.) |
Ref | Expression |
---|---|
latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
latasymd.l | ⊢ ≤ = (le‘𝐾) |
latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
Ref | Expression |
---|---|
latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | 6, 7 | latasymb 18160 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
9 | 3, 4, 5, 8 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
10 | 1, 2, 9 | mpbi2and 709 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 Latclat 18149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 df-iota 6391 df-fv 6441 df-proset 18013 df-poset 18031 df-lat 18150 |
This theorem is referenced by: latjidm 18180 latmidm 18192 latjass 18201 oldmm1 37231 olj01 37239 olm01 37250 cvlcvr1 37353 llnmlplnN 37553 2llnjaN 37580 2lplnja 37633 cdlema1N 37805 hlmod1i 37870 lautj 38107 lautm 38108 cdleme19a 38317 cdleme28b 38385 trljco 38754 dochvalr 39371 |
Copyright terms: Public domain | W3C validator |