| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version | ||
| Description: Deduce equality from lattice ordering. (eqssd 3947 analog.) (Contributed by NM, 18-Nov-2011.) |
| Ref | Expression |
|---|---|
| latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
| latasymd.l | ⊢ ≤ = (le‘𝐾) |
| latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
| 3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 8 | 6, 7 | latasymb 18348 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 9 | 3, 4, 5, 8 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 10 | 1, 2, 9 | mpbi2and 712 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 Basecbs 17120 lecple 17168 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-iota 6437 df-fv 6489 df-proset 18200 df-poset 18219 df-lat 18338 |
| This theorem is referenced by: latjidm 18368 latmidm 18380 latjass 18389 oldmm1 39264 olj01 39272 olm01 39283 cvlcvr1 39386 llnmlplnN 39586 2llnjaN 39613 2lplnja 39666 cdlema1N 39838 hlmod1i 39903 lautj 40140 lautm 40141 cdleme19a 40350 cdleme28b 40418 trljco 40787 dochvalr 41404 |
| Copyright terms: Public domain | W3C validator |