| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version | ||
| Description: Deduce equality from lattice ordering. (eqssd 3961 analog.) (Contributed by NM, 18-Nov-2011.) |
| Ref | Expression |
|---|---|
| latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
| latasymd.l | ⊢ ≤ = (le‘𝐾) |
| latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
| 3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 8 | 6, 7 | latasymb 18377 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 9 | 3, 4, 5, 8 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 10 | 1, 2, 9 | mpbi2and 712 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 lecple 17203 Latclat 18366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-iota 6452 df-fv 6507 df-proset 18231 df-poset 18250 df-lat 18367 |
| This theorem is referenced by: latjidm 18397 latmidm 18409 latjass 18418 oldmm1 39183 olj01 39191 olm01 39202 cvlcvr1 39305 llnmlplnN 39506 2llnjaN 39533 2lplnja 39586 cdlema1N 39758 hlmod1i 39823 lautj 40060 lautm 40061 cdleme19a 40270 cdleme28b 40338 trljco 40707 dochvalr 41324 |
| Copyright terms: Public domain | W3C validator |