![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version |
Description: Deduce equality from lattice ordering. (eqssd 3813 analog.) (Contributed by NM, 18-Nov-2011.) |
Ref | Expression |
---|---|
latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
latasymd.l | ⊢ ≤ = (le‘𝐾) |
latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
Ref | Expression |
---|---|
latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | 6, 7 | latasymb 17366 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
9 | 3, 4, 5, 8 | syl3anc 1491 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
10 | 1, 2, 9 | mpbi2and 704 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4841 ‘cfv 6099 Basecbs 16181 lecple 16271 Latclat 17357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-nul 4981 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-xp 5316 df-dm 5320 df-iota 6062 df-fv 6107 df-proset 17240 df-poset 17258 df-lat 17358 |
This theorem is referenced by: latjidm 17386 latmidm 17398 latjass 17407 oldmm1 35230 olj01 35238 olm01 35249 cvlcvr1 35352 llnmlplnN 35552 2llnjaN 35579 2lplnja 35632 cdlema1N 35804 hlmod1i 35869 lautj 36106 lautm 36107 cdleme19a 36316 cdleme28b 36384 trljco 36753 dochvalr 37370 |
Copyright terms: Public domain | W3C validator |