![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version |
Description: Deduce equality from lattice ordering. (eqssd 4026 analog.) (Contributed by NM, 18-Nov-2011.) |
Ref | Expression |
---|---|
latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
latasymd.l | ⊢ ≤ = (le‘𝐾) |
latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
Ref | Expression |
---|---|
latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | 6, 7 | latasymb 18512 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
9 | 3, 4, 5, 8 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
10 | 1, 2, 9 | mpbi2and 711 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-proset 18365 df-poset 18383 df-lat 18502 |
This theorem is referenced by: latjidm 18532 latmidm 18544 latjass 18553 oldmm1 39173 olj01 39181 olm01 39192 cvlcvr1 39295 llnmlplnN 39496 2llnjaN 39523 2lplnja 39576 cdlema1N 39748 hlmod1i 39813 lautj 40050 lautm 40051 cdleme19a 40260 cdleme28b 40328 trljco 40697 dochvalr 41314 |
Copyright terms: Public domain | W3C validator |