MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasymd Structured version   Visualization version   GIF version

Theorem latasymd 17655
Description: Deduce equality from lattice ordering. (eqssd 3981 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
latasymd.b 𝐵 = (Base‘𝐾)
latasymd.l = (le‘𝐾)
latasymd.3 (𝜑𝐾 ∈ Lat)
latasymd.4 (𝜑𝑋𝐵)
latasymd.5 (𝜑𝑌𝐵)
latasymd.6 (𝜑𝑋 𝑌)
latasymd.7 (𝜑𝑌 𝑋)
Assertion
Ref Expression
latasymd (𝜑𝑋 = 𝑌)

Proof of Theorem latasymd
StepHypRef Expression
1 latasymd.6 . 2 (𝜑𝑋 𝑌)
2 latasymd.7 . 2 (𝜑𝑌 𝑋)
3 latasymd.3 . . 3 (𝜑𝐾 ∈ Lat)
4 latasymd.4 . . 3 (𝜑𝑋𝐵)
5 latasymd.5 . . 3 (𝜑𝑌𝐵)
6 latasymd.b . . . 4 𝐵 = (Base‘𝐾)
7 latasymd.l . . . 4 = (le‘𝐾)
86, 7latasymb 17652 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
93, 4, 5, 8syl3anc 1363 . 2 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
101, 2, 9mpbi2and 708 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  Basecbs 16471  lecple 16560  Latclat 17643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-nul 5201
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-xp 5554  df-dm 5558  df-iota 6307  df-fv 6356  df-proset 17526  df-poset 17544  df-lat 17644
This theorem is referenced by:  latjidm  17672  latmidm  17684  latjass  17693  oldmm1  36233  olj01  36241  olm01  36252  cvlcvr1  36355  llnmlplnN  36555  2llnjaN  36582  2lplnja  36635  cdlema1N  36807  hlmod1i  36872  lautj  37109  lautm  37110  cdleme19a  37319  cdleme28b  37387  trljco  37756  dochvalr  38373
  Copyright terms: Public domain W3C validator