MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasymd Structured version   Visualization version   GIF version

Theorem latasymd 18404
Description: Deduce equality from lattice ordering. (eqssd 3964 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
latasymd.b 𝐵 = (Base‘𝐾)
latasymd.l = (le‘𝐾)
latasymd.3 (𝜑𝐾 ∈ Lat)
latasymd.4 (𝜑𝑋𝐵)
latasymd.5 (𝜑𝑌𝐵)
latasymd.6 (𝜑𝑋 𝑌)
latasymd.7 (𝜑𝑌 𝑋)
Assertion
Ref Expression
latasymd (𝜑𝑋 = 𝑌)

Proof of Theorem latasymd
StepHypRef Expression
1 latasymd.6 . 2 (𝜑𝑋 𝑌)
2 latasymd.7 . 2 (𝜑𝑌 𝑋)
3 latasymd.3 . . 3 (𝜑𝐾 ∈ Lat)
4 latasymd.4 . . 3 (𝜑𝑋𝐵)
5 latasymd.5 . . 3 (𝜑𝑌𝐵)
6 latasymd.b . . . 4 𝐵 = (Base‘𝐾)
7 latasymd.l . . . 4 = (le‘𝐾)
86, 7latasymb 18401 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
93, 4, 5, 8syl3anc 1373 . 2 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
101, 2, 9mpbi2and 712 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  Latclat 18390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-dm 5648  df-iota 6464  df-fv 6519  df-proset 18255  df-poset 18274  df-lat 18391
This theorem is referenced by:  latjidm  18421  latmidm  18433  latjass  18442  oldmm1  39210  olj01  39218  olm01  39229  cvlcvr1  39332  llnmlplnN  39533  2llnjaN  39560  2lplnja  39613  cdlema1N  39785  hlmod1i  39850  lautj  40087  lautm  40088  cdleme19a  40297  cdleme28b  40365  trljco  40734  dochvalr  41351
  Copyright terms: Public domain W3C validator