MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasymd Structured version   Visualization version   GIF version

Theorem latasymd 18351
Description: Deduce equality from lattice ordering. (eqssd 3953 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
latasymd.b 𝐵 = (Base‘𝐾)
latasymd.l = (le‘𝐾)
latasymd.3 (𝜑𝐾 ∈ Lat)
latasymd.4 (𝜑𝑋𝐵)
latasymd.5 (𝜑𝑌𝐵)
latasymd.6 (𝜑𝑋 𝑌)
latasymd.7 (𝜑𝑌 𝑋)
Assertion
Ref Expression
latasymd (𝜑𝑋 = 𝑌)

Proof of Theorem latasymd
StepHypRef Expression
1 latasymd.6 . 2 (𝜑𝑋 𝑌)
2 latasymd.7 . 2 (𝜑𝑌 𝑋)
3 latasymd.3 . . 3 (𝜑𝐾 ∈ Lat)
4 latasymd.4 . . 3 (𝜑𝑋𝐵)
5 latasymd.5 . . 3 (𝜑𝑌𝐵)
6 latasymd.b . . . 4 𝐵 = (Base‘𝐾)
7 latasymd.l . . . 4 = (le‘𝐾)
86, 7latasymb 18348 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
93, 4, 5, 8syl3anc 1373 . 2 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
101, 2, 9mpbi2and 712 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  Basecbs 17120  lecple 17168  Latclat 18337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-dm 5629  df-iota 6438  df-fv 6490  df-proset 18200  df-poset 18219  df-lat 18338
This theorem is referenced by:  latjidm  18368  latmidm  18380  latjass  18389  oldmm1  39196  olj01  39204  olm01  39215  cvlcvr1  39318  llnmlplnN  39518  2llnjaN  39545  2lplnja  39598  cdlema1N  39770  hlmod1i  39835  lautj  40072  lautm  40073  cdleme19a  40282  cdleme28b  40350  trljco  40719  dochvalr  41336
  Copyright terms: Public domain W3C validator