MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasymd Structured version   Visualization version   GIF version

Theorem latasymd 18382
Description: Deduce equality from lattice ordering. (eqssd 3996 analog.) (Contributed by NM, 18-Nov-2011.)
Hypotheses
Ref Expression
latasymd.b 𝐵 = (Base‘𝐾)
latasymd.l = (le‘𝐾)
latasymd.3 (𝜑𝐾 ∈ Lat)
latasymd.4 (𝜑𝑋𝐵)
latasymd.5 (𝜑𝑌𝐵)
latasymd.6 (𝜑𝑋 𝑌)
latasymd.7 (𝜑𝑌 𝑋)
Assertion
Ref Expression
latasymd (𝜑𝑋 = 𝑌)

Proof of Theorem latasymd
StepHypRef Expression
1 latasymd.6 . 2 (𝜑𝑋 𝑌)
2 latasymd.7 . 2 (𝜑𝑌 𝑋)
3 latasymd.3 . . 3 (𝜑𝐾 ∈ Lat)
4 latasymd.4 . . 3 (𝜑𝑋𝐵)
5 latasymd.5 . . 3 (𝜑𝑌𝐵)
6 latasymd.b . . . 4 𝐵 = (Base‘𝐾)
7 latasymd.l . . . 4 = (le‘𝐾)
86, 7latasymb 18379 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
93, 4, 5, 8syl3anc 1371 . 2 (𝜑 → ((𝑋 𝑌𝑌 𝑋) ↔ 𝑋 = 𝑌))
101, 2, 9mpbi2and 710 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5142  cfv 6533  Basecbs 17128  lecple 17188  Latclat 18368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-xp 5676  df-dm 5680  df-iota 6485  df-fv 6541  df-proset 18232  df-poset 18250  df-lat 18369
This theorem is referenced by:  latjidm  18399  latmidm  18411  latjass  18420  oldmm1  37956  olj01  37964  olm01  37975  cvlcvr1  38078  llnmlplnN  38279  2llnjaN  38306  2lplnja  38359  cdlema1N  38531  hlmod1i  38596  lautj  38833  lautm  38834  cdleme19a  39043  cdleme28b  39111  trljco  39480  dochvalr  40097
  Copyright terms: Public domain W3C validator