| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latasymd | Structured version Visualization version GIF version | ||
| Description: Deduce equality from lattice ordering. (eqssd 3953 analog.) (Contributed by NM, 18-Nov-2011.) |
| Ref | Expression |
|---|---|
| latasymd.b | ⊢ 𝐵 = (Base‘𝐾) |
| latasymd.l | ⊢ ≤ = (le‘𝐾) |
| latasymd.3 | ⊢ (𝜑 → 𝐾 ∈ Lat) |
| latasymd.4 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| latasymd.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| latasymd.6 | ⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| latasymd.7 | ⊢ (𝜑 → 𝑌 ≤ 𝑋) |
| Ref | Expression |
|---|---|
| latasymd | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latasymd.6 | . 2 ⊢ (𝜑 → 𝑋 ≤ 𝑌) | |
| 2 | latasymd.7 | . 2 ⊢ (𝜑 → 𝑌 ≤ 𝑋) | |
| 3 | latasymd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ Lat) | |
| 4 | latasymd.4 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | latasymd.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | latasymd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | latasymd.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 8 | 6, 7 | latasymb 18348 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 9 | 3, 4, 5, 8 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
| 10 | 1, 2, 9 | mpbi2and 712 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 lecple 17168 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-dm 5629 df-iota 6438 df-fv 6490 df-proset 18200 df-poset 18219 df-lat 18338 |
| This theorem is referenced by: latjidm 18368 latmidm 18380 latjass 18389 oldmm1 39196 olj01 39204 olm01 39215 cvlcvr1 39318 llnmlplnN 39518 2llnjaN 39545 2lplnja 39598 cdlema1N 39770 hlmod1i 39835 lautj 40072 lautm 40073 cdleme19a 40282 cdleme28b 40350 trljco 40719 dochvalr 41336 |
| Copyright terms: Public domain | W3C validator |