MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  no2indslem Structured version   Visualization version   GIF version

Theorem no2indslem 27837
Description: Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
no2indslem.a 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
no2indslem.1 (𝑥 = 𝑧 → (𝜑𝜓))
no2indslem.2 (𝑦 = 𝑤 → (𝜓𝜒))
no2indslem.3 (𝑥 = 𝑧 → (𝜃𝜒))
no2indslem.4 (𝑥 = 𝐴 → (𝜑𝜏))
no2indslem.5 (𝑦 = 𝐵 → (𝜏𝜂))
no2indslem.i ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
Assertion
Ref Expression
no2indslem ((𝐴 No 𝐵 No ) → 𝜂)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑦,𝑎   𝑦,𝐴   𝑥,𝑏,𝑦   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑤,𝑥   𝑥,𝑅,𝑦,𝑤,𝑧   𝜏,𝑥   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑎,𝑏)   𝜓(𝑦,𝑧,𝑎,𝑏)   𝜒(𝑥,𝑧,𝑤,𝑎,𝑏)   𝜃(𝑥,𝑦,𝑤,𝑎,𝑏)   𝜏(𝑦,𝑧,𝑤,𝑎,𝑏)   𝜂(𝑥,𝑧,𝑤,𝑎,𝑏)   𝐴(𝑧,𝑤,𝑎,𝑏)   𝐵(𝑥,𝑧,𝑤,𝑎,𝑏)   𝑅(𝑎,𝑏)

Proof of Theorem no2indslem
StepHypRef Expression
1 no2indslem.a . . 3 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
21lrrecfr 27826 . 2 𝑅 Fr No
31lrrecpo 27824 . 2 𝑅 Po No
41lrrecse 27825 . 2 𝑅 Se No
5 no2indslem.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
6 no2indslem.2 . 2 (𝑦 = 𝑤 → (𝜓𝜒))
7 no2indslem.3 . 2 (𝑥 = 𝑧 → (𝜃𝜒))
8 no2indslem.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
9 no2indslem.5 . 2 (𝑦 = 𝐵 → (𝜏𝜂))
101lrrecpred 27827 . . . . . 6 (𝑥 No → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
1110adantr 480 . . . . 5 ((𝑥 No 𝑦 No ) → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
121lrrecpred 27827 . . . . . . 7 (𝑦 No → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦)))
1312adantl 481 . . . . . 6 ((𝑥 No 𝑦 No ) → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦)))
1413raleqdv 3296 . . . . 5 ((𝑥 No 𝑦 No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒))
1511, 14raleqbidv 3316 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒))
1611raleqdv 3296 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓))
1713raleqdv 3296 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃))
1815, 16, 173anbi123d 1438 . . 3 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) ↔ (∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃)))
19 no2indslem.i . . 3 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
2018, 19sylbid 240 . 2 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) → 𝜑))
212, 3, 4, 2, 3, 4, 5, 6, 7, 8, 9, 20xpord2ind 8104 1 ((𝐴 No 𝐵 No ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3909  {copab 5164  Predcpred 6261  cfv 6499   No csur 27527   L cleft 27729   R cright 27730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27530  df-slt 27531  df-bday 27532  df-sslt 27669  df-scut 27671  df-made 27731  df-old 27732  df-left 27734  df-right 27735
This theorem is referenced by:  no2inds  27838
  Copyright terms: Public domain W3C validator