Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > no2indslem | Structured version Visualization version GIF version |
Description: Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.) |
Ref | Expression |
---|---|
no2indslem.a | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
no2indslem.b | ⊢ 𝑆 = {〈𝑐, 𝑑〉 ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st ‘𝑐)𝑅(1st ‘𝑑) ∨ (1st ‘𝑐) = (1st ‘𝑑)) ∧ ((2nd ‘𝑐)𝑅(2nd ‘𝑑) ∨ (2nd ‘𝑐) = (2nd ‘𝑑)) ∧ 𝑐 ≠ 𝑑))} |
no2indslem.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
no2indslem.2 | ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) |
no2indslem.3 | ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) |
no2indslem.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
no2indslem.5 | ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) |
no2indslem.i | ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) |
Ref | Expression |
---|---|
no2indslem | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | no2indslem.b | . 2 ⊢ 𝑆 = {〈𝑐, 𝑑〉 ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st ‘𝑐)𝑅(1st ‘𝑑) ∨ (1st ‘𝑐) = (1st ‘𝑑)) ∧ ((2nd ‘𝑐)𝑅(2nd ‘𝑑) ∨ (2nd ‘𝑐) = (2nd ‘𝑑)) ∧ 𝑐 ≠ 𝑑))} | |
2 | no2indslem.a | . . 3 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
3 | 2 | lrrecfr 34145 | . 2 ⊢ 𝑅 Fr No |
4 | 2 | lrrecpo 34143 | . 2 ⊢ 𝑅 Po No |
5 | 2 | lrrecse 34144 | . 2 ⊢ 𝑅 Se No |
6 | no2indslem.1 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
7 | no2indslem.2 | . 2 ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) | |
8 | no2indslem.3 | . 2 ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) | |
9 | no2indslem.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
10 | no2indslem.5 | . 2 ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) | |
11 | 2 | lrrecpred 34146 | . . . . . 6 ⊢ (𝑥 ∈ No → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
12 | 11 | adantr 482 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
13 | 2 | lrrecpred 34146 | . . . . . . 7 ⊢ (𝑦 ∈ No → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
14 | 13 | adantl 483 | . . . . . 6 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
15 | 14 | raleqdv 3360 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒)) |
16 | 12, 15 | raleqbidv 3348 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒)) |
17 | 12 | raleqdv 3360 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓)) |
18 | 14 | raleqdv 3360 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃)) |
19 | 16, 17, 18 | 3anbi123d 1436 | . . 3 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) ↔ (∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃))) |
20 | no2indslem.i | . . 3 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) | |
21 | 19, 20 | sylbid 239 | . 2 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) → 𝜑)) |
22 | 1, 3, 4, 5, 3, 4, 5, 6, 7, 8, 9, 10, 21 | xpord2ind 33839 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 845 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∪ cun 3890 class class class wbr 5081 {copab 5143 × cxp 5598 Predcpred 6216 ‘cfv 6458 1st c1st 7861 2nd c2nd 7862 No csur 33888 L cleft 34074 R cright 34075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-1o 8328 df-2o 8329 df-no 33891 df-slt 33892 df-bday 33893 df-sslt 34021 df-scut 34023 df-made 34076 df-old 34077 df-left 34079 df-right 34080 |
This theorem is referenced by: no2inds 34157 |
Copyright terms: Public domain | W3C validator |