| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > no2indslem | Structured version Visualization version GIF version | ||
| Description: Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| no2indslem.a | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
| no2indslem.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
| no2indslem.2 | ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) |
| no2indslem.3 | ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) |
| no2indslem.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| no2indslem.5 | ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) |
| no2indslem.i | ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) |
| Ref | Expression |
|---|---|
| no2indslem | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | no2indslem.a | . . 3 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
| 2 | 1 | lrrecfr 27902 | . 2 ⊢ 𝑅 Fr No |
| 3 | 1 | lrrecpo 27900 | . 2 ⊢ 𝑅 Po No |
| 4 | 1 | lrrecse 27901 | . 2 ⊢ 𝑅 Se No |
| 5 | no2indslem.1 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
| 6 | no2indslem.2 | . 2 ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) | |
| 7 | no2indslem.3 | . 2 ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) | |
| 8 | no2indslem.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 9 | no2indslem.5 | . 2 ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) | |
| 10 | 1 | lrrecpred 27903 | . . . . . 6 ⊢ (𝑥 ∈ No → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
| 12 | 1 | lrrecpred 27903 | . . . . . . 7 ⊢ (𝑦 ∈ No → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
| 14 | 13 | raleqdv 3305 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒)) |
| 15 | 11, 14 | raleqbidv 3325 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒)) |
| 16 | 11 | raleqdv 3305 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓)) |
| 17 | 13 | raleqdv 3305 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃)) |
| 18 | 15, 16, 17 | 3anbi123d 1438 | . . 3 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) ↔ (∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃))) |
| 19 | no2indslem.i | . . 3 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) | |
| 20 | 18, 19 | sylbid 240 | . 2 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) → 𝜑)) |
| 21 | 2, 3, 4, 2, 3, 4, 5, 6, 7, 8, 9, 20 | xpord2ind 8147 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∪ cun 3924 {copab 5181 Predcpred 6289 ‘cfv 6531 No csur 27603 L cleft 27805 R cright 27806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 df-bday 27608 df-sslt 27745 df-scut 27747 df-made 27807 df-old 27808 df-left 27810 df-right 27811 |
| This theorem is referenced by: no2inds 27914 |
| Copyright terms: Public domain | W3C validator |