Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  no2indslem Structured version   Visualization version   GIF version

Theorem no2indslem 34090
Description: Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
no2indslem.a 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
no2indslem.b 𝑆 = {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st𝑐)𝑅(1st𝑑) ∨ (1st𝑐) = (1st𝑑)) ∧ ((2nd𝑐)𝑅(2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑)) ∧ 𝑐𝑑))}
no2indslem.1 (𝑥 = 𝑧 → (𝜑𝜓))
no2indslem.2 (𝑦 = 𝑤 → (𝜓𝜒))
no2indslem.3 (𝑥 = 𝑧 → (𝜃𝜒))
no2indslem.4 (𝑥 = 𝐴 → (𝜑𝜏))
no2indslem.5 (𝑦 = 𝐵 → (𝜏𝜂))
no2indslem.i ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
Assertion
Ref Expression
no2indslem ((𝐴 No 𝐵 No ) → 𝜂)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑦,𝑎   𝑦,𝐴   𝑥,𝑏,𝑦   𝑦,𝐵   𝑐,𝑑   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑤,𝑥   𝑅,𝑐,𝑑   𝑤,𝑅,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝜏,𝑥   𝜃,𝑧   𝑥,𝑤,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑎,𝑏,𝑐,𝑑)   𝜓(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝜒(𝑥,𝑧,𝑤,𝑎,𝑏,𝑐,𝑑)   𝜃(𝑥,𝑦,𝑤,𝑎,𝑏,𝑐,𝑑)   𝜏(𝑦,𝑧,𝑤,𝑎,𝑏,𝑐,𝑑)   𝜂(𝑥,𝑧,𝑤,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑧,𝑤,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑥,𝑧,𝑤,𝑎,𝑏,𝑐,𝑑)   𝑅(𝑥,𝑦,𝑎,𝑏)   𝑆(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem no2indslem
StepHypRef Expression
1 no2indslem.b . 2 𝑆 = {⟨𝑐, 𝑑⟩ ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st𝑐)𝑅(1st𝑑) ∨ (1st𝑐) = (1st𝑑)) ∧ ((2nd𝑐)𝑅(2nd𝑑) ∨ (2nd𝑐) = (2nd𝑑)) ∧ 𝑐𝑑))}
2 no2indslem.a . . 3 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
32lrrecfr 34079 . 2 𝑅 Fr No
42lrrecpo 34077 . 2 𝑅 Po No
52lrrecse 34078 . 2 𝑅 Se No
6 no2indslem.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
7 no2indslem.2 . 2 (𝑦 = 𝑤 → (𝜓𝜒))
8 no2indslem.3 . 2 (𝑥 = 𝑧 → (𝜃𝜒))
9 no2indslem.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
10 no2indslem.5 . 2 (𝑦 = 𝐵 → (𝜏𝜂))
112lrrecpred 34080 . . . . . 6 (𝑥 No → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
1211adantr 480 . . . . 5 ((𝑥 No 𝑦 No ) → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
132lrrecpred 34080 . . . . . . 7 (𝑦 No → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦)))
1413adantl 481 . . . . . 6 ((𝑥 No 𝑦 No ) → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦)))
1514raleqdv 3346 . . . . 5 ((𝑥 No 𝑦 No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒))
1612, 15raleqbidv 3334 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒))
1712raleqdv 3346 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓))
1814raleqdv 3346 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃))
1916, 17, 183anbi123d 1434 . . 3 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) ↔ (∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃)))
20 no2indslem.i . . 3 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
2119, 20sylbid 239 . 2 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) → 𝜑))
221, 3, 4, 5, 3, 4, 5, 6, 7, 8, 9, 10, 21xpord2ind 33773 1 ((𝐴 No 𝐵 No ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wral 3065  cun 3889   class class class wbr 5078  {copab 5140   × cxp 5586  Predcpred 6198  cfv 6430  1st c1st 7815  2nd c2nd 7816   No csur 33822   L cleft 34008   R cright 34009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-1o 8281  df-2o 8282  df-no 33825  df-slt 33826  df-bday 33827  df-sslt 33955  df-scut 33957  df-made 34010  df-old 34011  df-left 34013  df-right 34014
This theorem is referenced by:  no2inds  34091
  Copyright terms: Public domain W3C validator