MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  no2indslem Structured version   Visualization version   GIF version

Theorem no2indslem 27435
Description: Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
no2indslem.a 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
no2indslem.1 (𝑥 = 𝑧 → (𝜑𝜓))
no2indslem.2 (𝑦 = 𝑤 → (𝜓𝜒))
no2indslem.3 (𝑥 = 𝑧 → (𝜃𝜒))
no2indslem.4 (𝑥 = 𝐴 → (𝜑𝜏))
no2indslem.5 (𝑦 = 𝐵 → (𝜏𝜂))
no2indslem.i ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
Assertion
Ref Expression
no2indslem ((𝐴 No 𝐵 No ) → 𝜂)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑦,𝑎   𝑦,𝐴   𝑥,𝑏,𝑦   𝑦,𝐵   𝜒,𝑦   𝜂,𝑦   𝜑,𝑧   𝜓,𝑤,𝑥   𝑥,𝑅,𝑦,𝑤,𝑧   𝜏,𝑥   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑤,𝑎,𝑏)   𝜓(𝑦,𝑧,𝑎,𝑏)   𝜒(𝑥,𝑧,𝑤,𝑎,𝑏)   𝜃(𝑥,𝑦,𝑤,𝑎,𝑏)   𝜏(𝑦,𝑧,𝑤,𝑎,𝑏)   𝜂(𝑥,𝑧,𝑤,𝑎,𝑏)   𝐴(𝑧,𝑤,𝑎,𝑏)   𝐵(𝑥,𝑧,𝑤,𝑎,𝑏)   𝑅(𝑎,𝑏)

Proof of Theorem no2indslem
StepHypRef Expression
1 no2indslem.a . . 3 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
21lrrecfr 27424 . 2 𝑅 Fr No
31lrrecpo 27422 . 2 𝑅 Po No
41lrrecse 27423 . 2 𝑅 Se No
5 no2indslem.1 . 2 (𝑥 = 𝑧 → (𝜑𝜓))
6 no2indslem.2 . 2 (𝑦 = 𝑤 → (𝜓𝜒))
7 no2indslem.3 . 2 (𝑥 = 𝑧 → (𝜃𝜒))
8 no2indslem.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
9 no2indslem.5 . 2 (𝑦 = 𝐵 → (𝜏𝜂))
101lrrecpred 27425 . . . . . 6 (𝑥 No → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
1110adantr 481 . . . . 5 ((𝑥 No 𝑦 No ) → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥)))
121lrrecpred 27425 . . . . . . 7 (𝑦 No → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦)))
1312adantl 482 . . . . . 6 ((𝑥 No 𝑦 No ) → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦)))
1413raleqdv 3325 . . . . 5 ((𝑥 No 𝑦 No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒))
1511, 14raleqbidv 3342 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒))
1611raleqdv 3325 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓))
1713raleqdv 3325 . . . 4 ((𝑥 No 𝑦 No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃))
1815, 16, 173anbi123d 1436 . . 3 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) ↔ (∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃)))
19 no2indslem.i . . 3 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑))
2018, 19sylbid 239 . 2 ((𝑥 No 𝑦 No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) → 𝜑))
212, 3, 4, 2, 3, 4, 5, 6, 7, 8, 9, 20xpord2ind 8133 1 ((𝐴 No 𝐵 No ) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  cun 3946  {copab 5210  Predcpred 6299  cfv 6543   No csur 27140   L cleft 27337   R cright 27338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-1o 8465  df-2o 8466  df-no 27143  df-slt 27144  df-bday 27145  df-sslt 27280  df-scut 27282  df-made 27339  df-old 27340  df-left 27342  df-right 27343
This theorem is referenced by:  no2inds  27436
  Copyright terms: Public domain W3C validator