![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > no2indslem | Structured version Visualization version GIF version |
Description: Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.) |
Ref | Expression |
---|---|
no2indslem.a | ⊢ 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
no2indslem.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
no2indslem.2 | ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) |
no2indslem.3 | ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) |
no2indslem.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
no2indslem.5 | ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) |
no2indslem.i | ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) |
Ref | Expression |
---|---|
no2indslem | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | no2indslem.a | . . 3 ⊢ 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
2 | 1 | lrrecfr 27424 | . 2 ⊢ 𝑅 Fr No |
3 | 1 | lrrecpo 27422 | . 2 ⊢ 𝑅 Po No |
4 | 1 | lrrecse 27423 | . 2 ⊢ 𝑅 Se No |
5 | no2indslem.1 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
6 | no2indslem.2 | . 2 ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) | |
7 | no2indslem.3 | . 2 ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) | |
8 | no2indslem.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
9 | no2indslem.5 | . 2 ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) | |
10 | 1 | lrrecpred 27425 | . . . . . 6 ⊢ (𝑥 ∈ No → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
12 | 1 | lrrecpred 27425 | . . . . . . 7 ⊢ (𝑦 ∈ No → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
13 | 12 | adantl 482 | . . . . . 6 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
14 | 13 | raleqdv 3325 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒)) |
15 | 11, 14 | raleqbidv 3342 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒)) |
16 | 11 | raleqdv 3325 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓)) |
17 | 13 | raleqdv 3325 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃)) |
18 | 15, 16, 17 | 3anbi123d 1436 | . . 3 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) ↔ (∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃))) |
19 | no2indslem.i | . . 3 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) | |
20 | 18, 19 | sylbid 239 | . 2 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) → 𝜑)) |
21 | 2, 3, 4, 2, 3, 4, 5, 6, 7, 8, 9, 20 | xpord2ind 8133 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∪ cun 3946 {copab 5210 Predcpred 6299 ‘cfv 6543 No csur 27140 L cleft 27337 R cright 27338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-1o 8465 df-2o 8466 df-no 27143 df-slt 27144 df-bday 27145 df-sslt 27280 df-scut 27282 df-made 27339 df-old 27340 df-left 27342 df-right 27343 |
This theorem is referenced by: no2inds 27436 |
Copyright terms: Public domain | W3C validator |