Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > no2indslem | Structured version Visualization version GIF version |
Description: Double induction on surreals with explicit notation for the relationships. (Contributed by Scott Fenton, 22-Aug-2024.) |
Ref | Expression |
---|---|
no2indslem.a | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
no2indslem.b | ⊢ 𝑆 = {〈𝑐, 𝑑〉 ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st ‘𝑐)𝑅(1st ‘𝑑) ∨ (1st ‘𝑐) = (1st ‘𝑑)) ∧ ((2nd ‘𝑐)𝑅(2nd ‘𝑑) ∨ (2nd ‘𝑐) = (2nd ‘𝑑)) ∧ 𝑐 ≠ 𝑑))} |
no2indslem.1 | ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) |
no2indslem.2 | ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) |
no2indslem.3 | ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) |
no2indslem.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
no2indslem.5 | ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) |
no2indslem.i | ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) |
Ref | Expression |
---|---|
no2indslem | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | no2indslem.b | . 2 ⊢ 𝑆 = {〈𝑐, 𝑑〉 ∣ (𝑐 ∈ ( No × No ) ∧ 𝑑 ∈ ( No × No ) ∧ (((1st ‘𝑐)𝑅(1st ‘𝑑) ∨ (1st ‘𝑐) = (1st ‘𝑑)) ∧ ((2nd ‘𝑐)𝑅(2nd ‘𝑑) ∨ (2nd ‘𝑐) = (2nd ‘𝑑)) ∧ 𝑐 ≠ 𝑑))} | |
2 | no2indslem.a | . . 3 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
3 | 2 | lrrecfr 33729 | . 2 ⊢ 𝑅 Fr No |
4 | 2 | lrrecpo 33727 | . 2 ⊢ 𝑅 Po No |
5 | 2 | lrrecse 33728 | . 2 ⊢ 𝑅 Se No |
6 | no2indslem.1 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) | |
7 | no2indslem.2 | . 2 ⊢ (𝑦 = 𝑤 → (𝜓 ↔ 𝜒)) | |
8 | no2indslem.3 | . 2 ⊢ (𝑥 = 𝑧 → (𝜃 ↔ 𝜒)) | |
9 | no2indslem.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
10 | no2indslem.5 | . 2 ⊢ (𝑦 = 𝐵 → (𝜏 ↔ 𝜂)) | |
11 | 2 | lrrecpred 33730 | . . . . . 6 ⊢ (𝑥 ∈ No → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
12 | 11 | adantr 484 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred(𝑅, No , 𝑥) = (( L ‘𝑥) ∪ ( R ‘𝑥))) |
13 | 2 | lrrecpred 33730 | . . . . . . 7 ⊢ (𝑦 ∈ No → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
14 | 13 | adantl 485 | . . . . . 6 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → Pred(𝑅, No , 𝑦) = (( L ‘𝑦) ∪ ( R ‘𝑦))) |
15 | 14 | raleqdv 3315 | . . . . 5 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒)) |
16 | 12, 15 | raleqbidv 3303 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒)) |
17 | 12 | raleqdv 3315 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ↔ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓)) |
18 | 14 | raleqdv 3315 | . . . 4 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → (∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃 ↔ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃)) |
19 | 16, 17, 18 | 3anbi123d 1437 | . . 3 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) ↔ (∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃))) |
20 | no2indslem.i | . . 3 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜒 ∧ ∀𝑧 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))𝜓 ∧ ∀𝑤 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))𝜃) → 𝜑)) | |
21 | 19, 20 | sylbid 243 | . 2 ⊢ ((𝑥 ∈ No ∧ 𝑦 ∈ No ) → ((∀𝑧 ∈ Pred (𝑅, No , 𝑥)∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜒 ∧ ∀𝑧 ∈ Pred (𝑅, No , 𝑥)𝜓 ∧ ∀𝑤 ∈ Pred (𝑅, No , 𝑦)𝜃) → 𝜑)) |
22 | 1, 3, 4, 5, 3, 4, 5, 6, 7, 8, 9, 10, 21 | xpord2ind 33397 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ≠ wne 2934 ∀wral 3053 ∪ cun 3839 class class class wbr 5027 {copab 5089 × cxp 5517 Predcpred 6122 ‘cfv 6333 1st c1st 7705 2nd c2nd 7706 No csur 33476 L cleft 33662 R cright 33663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-1o 8124 df-2o 8125 df-no 33479 df-slt 33480 df-bday 33481 df-sslt 33609 df-scut 33611 df-made 33664 df-old 33665 df-left 33667 df-right 33668 |
This theorem is referenced by: no2inds 33741 |
Copyright terms: Public domain | W3C validator |