MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  no3inds Structured version   Visualization version   GIF version

Theorem no3inds 27270
Description: Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.)
Hypotheses
Ref Expression
no3inds.1 (𝑎 = 𝑑 → (𝜑𝜓))
no3inds.2 (𝑏 = 𝑒 → (𝜓𝜒))
no3inds.3 (𝑐 = 𝑓 → (𝜒𝜃))
no3inds.4 (𝑎 = 𝑑 → (𝜏𝜃))
no3inds.5 (𝑏 = 𝑒 → (𝜂𝜏))
no3inds.6 (𝑏 = 𝑒 → (𝜁𝜃))
no3inds.7 (𝑐 = 𝑓 → (𝜎𝜏))
no3inds.8 (𝑎 = 𝑋 → (𝜑𝜌))
no3inds.9 (𝑏 = 𝑌 → (𝜌𝜇))
no3inds.10 (𝑐 = 𝑍 → (𝜇𝜆))
no3inds.i ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑))
Assertion
Ref Expression
no3inds ((𝑋 No 𝑌 No 𝑍 No ) → 𝜆)
Distinct variable groups:   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑍,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎,𝑏,𝑐   𝜒,𝑏,𝑓   𝜇,𝑏   𝜆,𝑐   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem no3inds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
21lrrecfr 27255 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No
31lrrecpo 27253 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No
41lrrecse 27254 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No
5 no3inds.1 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
6 no3inds.2 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
7 no3inds.3 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
8 no3inds.4 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
9 no3inds.5 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
10 no3inds.6 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
11 no3inds.7 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
12 no3inds.8 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
13 no3inds.9 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
14 no3inds.10 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
151lrrecpred 27256 . . . . . . 7 (𝑎 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎) = (( L ‘𝑎) ∪ ( R ‘𝑎)))
16153ad2ant1 1133 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎) = (( L ‘𝑎) ∪ ( R ‘𝑎)))
171lrrecpred 27256 . . . . . . . 8 (𝑏 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏) = (( L ‘𝑏) ∪ ( R ‘𝑏)))
18173ad2ant2 1134 . . . . . . 7 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏) = (( L ‘𝑏) ∪ ( R ‘𝑏)))
191lrrecpred 27256 . . . . . . . . 9 (𝑐 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐) = (( L ‘𝑐) ∪ ( R ‘𝑐)))
20193ad2ant3 1135 . . . . . . . 8 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐) = (( L ‘𝑐) ∪ ( R ‘𝑐)))
2120raleqdv 3313 . . . . . . 7 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2218, 21raleqbidv 3319 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2316, 22raleqbidv 3319 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2418raleqdv 3313 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒))
2516, 24raleqbidv 3319 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒))
2620raleqdv 3313 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁))
2716, 26raleqbidv 3319 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁))
2823, 25, 273anbi123d 1436 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → ((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ↔ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁)))
2916raleqdv 3313 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓))
3020raleqdv 3313 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏))
3118, 30raleqbidv 3319 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏))
3218raleqdv 3313 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎))
3329, 31, 323anbi123d 1436 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → ((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ↔ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎)))
3420raleqdv 3313 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂))
3528, 33, 343anbi123d 1436 . . 3 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂) ↔ ((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂)))
36 no3inds.i . . 3 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑))
3735, 36sylbid 239 . 2 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂) → 𝜑))
382, 3, 4, 2, 3, 4, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 37xpord3ind 8088 1 ((𝑋 No 𝑌 No 𝑍 No ) → 𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cun 3908  {copab 5167  Predcpred 6252  cfv 6496   No csur 26988   L cleft 27175   R cright 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993  df-sslt 27121  df-scut 27123  df-made 27177  df-old 27178  df-left 27180  df-right 27181
This theorem is referenced by:  sleadd1  27298  addsass  27313
  Copyright terms: Public domain W3C validator