MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  no3inds Structured version   Visualization version   GIF version

Theorem no3inds 27841
Description: Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.)
Hypotheses
Ref Expression
no3inds.1 (𝑎 = 𝑑 → (𝜑𝜓))
no3inds.2 (𝑏 = 𝑒 → (𝜓𝜒))
no3inds.3 (𝑐 = 𝑓 → (𝜒𝜃))
no3inds.4 (𝑎 = 𝑑 → (𝜏𝜃))
no3inds.5 (𝑏 = 𝑒 → (𝜂𝜏))
no3inds.6 (𝑏 = 𝑒 → (𝜁𝜃))
no3inds.7 (𝑐 = 𝑓 → (𝜎𝜏))
no3inds.8 (𝑎 = 𝑋 → (𝜑𝜌))
no3inds.9 (𝑏 = 𝑌 → (𝜌𝜇))
no3inds.10 (𝑐 = 𝑍 → (𝜇𝜆))
no3inds.i ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑))
Assertion
Ref Expression
no3inds ((𝑋 No 𝑌 No 𝑍 No ) → 𝜆)
Distinct variable groups:   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑌,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝑍,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎,𝑏,𝑐   𝜒,𝑏,𝑓   𝜇,𝑏   𝜆,𝑐   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem no3inds
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
21lrrecfr 27826 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No
31lrrecpo 27824 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No
41lrrecse 27825 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No
5 no3inds.1 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
6 no3inds.2 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
7 no3inds.3 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
8 no3inds.4 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
9 no3inds.5 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
10 no3inds.6 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
11 no3inds.7 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
12 no3inds.8 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
13 no3inds.9 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
14 no3inds.10 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
151lrrecpred 27827 . . . . . . 7 (𝑎 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎) = (( L ‘𝑎) ∪ ( R ‘𝑎)))
16153ad2ant1 1133 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎) = (( L ‘𝑎) ∪ ( R ‘𝑎)))
171lrrecpred 27827 . . . . . . . 8 (𝑏 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏) = (( L ‘𝑏) ∪ ( R ‘𝑏)))
18173ad2ant2 1134 . . . . . . 7 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏) = (( L ‘𝑏) ∪ ( R ‘𝑏)))
191lrrecpred 27827 . . . . . . . . 9 (𝑐 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐) = (( L ‘𝑐) ∪ ( R ‘𝑐)))
20193ad2ant3 1135 . . . . . . . 8 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐) = (( L ‘𝑐) ∪ ( R ‘𝑐)))
2120raleqdv 3296 . . . . . . 7 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2218, 21raleqbidv 3316 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2316, 22raleqbidv 3316 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2418raleqdv 3296 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒))
2516, 24raleqbidv 3316 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒))
2620raleqdv 3296 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁))
2716, 26raleqbidv 3316 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁))
2823, 25, 273anbi123d 1438 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → ((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ↔ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁)))
2916raleqdv 3296 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓))
3020raleqdv 3296 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏))
3118, 30raleqbidv 3316 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏))
3218raleqdv 3296 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎))
3329, 31, 323anbi123d 1438 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → ((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ↔ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎)))
3420raleqdv 3296 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂))
3528, 33, 343anbi123d 1438 . . 3 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂) ↔ ((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂)))
36 no3inds.i . . 3 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑))
3735, 36sylbid 240 . 2 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂) → 𝜑))
382, 3, 4, 2, 3, 4, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 37xpord3ind 8112 1 ((𝑋 No 𝑌 No 𝑍 No ) → 𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cun 3909  {copab 5164  Predcpred 6261  cfv 6499   No csur 27527   L cleft 27729   R cright 27730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27530  df-slt 27531  df-bday 27532  df-sslt 27669  df-scut 27671  df-made 27731  df-old 27732  df-left 27734  df-right 27735
This theorem is referenced by:  sleadd1  27872  addsass  27888  addsdi  28034  mulsass  28045
  Copyright terms: Public domain W3C validator