Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  no3inds Structured version   Visualization version   GIF version

Theorem no3inds 33885
Description: Triple induction over surreal numbers. (Contributed by Scott Fenton, 9-Oct-2024.)
Hypotheses
Ref Expression
no3inds.1 (𝑎 = 𝑑 → (𝜑𝜓))
no3inds.2 (𝑏 = 𝑒 → (𝜓𝜒))
no3inds.3 (𝑐 = 𝑓 → (𝜒𝜃))
no3inds.4 (𝑎 = 𝑑 → (𝜏𝜃))
no3inds.5 (𝑏 = 𝑒 → (𝜂𝜏))
no3inds.6 (𝑏 = 𝑒 → (𝜁𝜃))
no3inds.7 (𝑐 = 𝑓 → (𝜎𝜏))
no3inds.8 (𝑎 = 𝑋 → (𝜑𝜌))
no3inds.9 (𝑏 = 𝑌 → (𝜌𝜇))
no3inds.10 (𝑐 = 𝑍 → (𝜇𝜆))
no3inds.i ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑))
Assertion
Ref Expression
no3inds ((𝑋 No 𝑌 No 𝑍 No ) → 𝜆)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜓,𝑎   𝜌,𝑎   𝜃,𝑎   𝑏,𝑐   𝜒,𝑏   𝑏,𝑑,𝑒,𝑓   𝜇,𝑏   𝜃,𝑏   𝑐,𝑑,𝑒,𝑓   𝜆,𝑐   𝜃,𝑐   𝜒,𝑓   𝑒,𝑑,𝑓   𝜑,𝑑   𝜏,𝑑   𝜂,𝑒   𝑒,𝑓   𝜓,𝑒   𝜁,𝑒   𝜎,𝑓   𝑋,𝑎,𝑏,𝑐   𝑌,𝑏,𝑐   𝑍,𝑐
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜓(𝑓,𝑏,𝑐,𝑑)   𝜒(𝑒,𝑎,𝑐,𝑑)   𝜃(𝑒,𝑓,𝑑)   𝜏(𝑒,𝑓,𝑎,𝑏,𝑐)   𝜂(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜁(𝑓,𝑎,𝑏,𝑐,𝑑)   𝜎(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜌(𝑒,𝑓,𝑏,𝑐,𝑑)   𝜇(𝑒,𝑓,𝑎,𝑐,𝑑)   𝜆(𝑒,𝑓,𝑎,𝑏,𝑑)   𝑋(𝑒,𝑓,𝑑)   𝑌(𝑒,𝑓,𝑎,𝑑)   𝑍(𝑒,𝑓,𝑎,𝑏,𝑑)

Proof of Theorem no3inds
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . 2 {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (( No × No ) × No ) ∧ 𝑤 ∈ (( No × No ) × No ) ∧ ((((1st ‘(1st𝑧)){⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} (1st ‘(1st𝑤)) ∨ (1st ‘(1st𝑧)) = (1st ‘(1st𝑤))) ∧ ((2nd ‘(1st𝑧)){⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} (2nd ‘(1st𝑤)) ∨ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑤))) ∧ ((2nd𝑧){⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} (2nd𝑤) ∨ (2nd𝑧) = (2nd𝑤))) ∧ 𝑧𝑤))} = {⟨𝑧, 𝑤⟩ ∣ (𝑧 ∈ (( No × No ) × No ) ∧ 𝑤 ∈ (( No × No ) × No ) ∧ ((((1st ‘(1st𝑧)){⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} (1st ‘(1st𝑤)) ∨ (1st ‘(1st𝑧)) = (1st ‘(1st𝑤))) ∧ ((2nd ‘(1st𝑧)){⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} (2nd ‘(1st𝑤)) ∨ (2nd ‘(1st𝑧)) = (2nd ‘(1st𝑤))) ∧ ((2nd𝑧){⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} (2nd𝑤) ∨ (2nd𝑧) = (2nd𝑤))) ∧ 𝑧𝑤))}
2 eqid 2739 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}
32lrrecfr 33870 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Fr No
42lrrecpo 33868 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Po No
52lrrecse 33869 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))} Se No
6 no3inds.1 . 2 (𝑎 = 𝑑 → (𝜑𝜓))
7 no3inds.2 . 2 (𝑏 = 𝑒 → (𝜓𝜒))
8 no3inds.3 . 2 (𝑐 = 𝑓 → (𝜒𝜃))
9 no3inds.4 . 2 (𝑎 = 𝑑 → (𝜏𝜃))
10 no3inds.5 . 2 (𝑏 = 𝑒 → (𝜂𝜏))
11 no3inds.6 . 2 (𝑏 = 𝑒 → (𝜁𝜃))
12 no3inds.7 . 2 (𝑐 = 𝑓 → (𝜎𝜏))
13 no3inds.8 . 2 (𝑎 = 𝑋 → (𝜑𝜌))
14 no3inds.9 . 2 (𝑏 = 𝑌 → (𝜌𝜇))
15 no3inds.10 . 2 (𝑐 = 𝑍 → (𝜇𝜆))
162lrrecpred 33871 . . . . . . 7 (𝑎 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎) = (( L ‘𝑎) ∪ ( R ‘𝑎)))
17163ad2ant1 1135 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎) = (( L ‘𝑎) ∪ ( R ‘𝑎)))
182lrrecpred 33871 . . . . . . . 8 (𝑏 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏) = (( L ‘𝑏) ∪ ( R ‘𝑏)))
19183ad2ant2 1136 . . . . . . 7 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏) = (( L ‘𝑏) ∪ ( R ‘𝑏)))
202lrrecpred 33871 . . . . . . . . 9 (𝑐 No → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐) = (( L ‘𝑐) ∪ ( R ‘𝑐)))
21203ad2ant3 1137 . . . . . . . 8 ((𝑎 No 𝑏 No 𝑐 No ) → Pred({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐) = (( L ‘𝑐) ∪ ( R ‘𝑐)))
2221raleqdv 3340 . . . . . . 7 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2319, 22raleqbidv 3328 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2417, 23raleqbidv 3328 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃))
2519raleqdv 3340 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒))
2617, 25raleqbidv 3328 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒))
2721raleqdv 3340 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁))
2817, 27raleqbidv 3328 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁))
2924, 26, 283anbi123d 1438 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → ((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ↔ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁)))
3017raleqdv 3340 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ↔ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓))
3121raleqdv 3340 . . . . . 6 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏))
3219, 31raleqbidv 3328 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏))
3319raleqdv 3340 . . . . 5 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎 ↔ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎))
3430, 32, 333anbi123d 1438 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → ((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ↔ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎)))
3521raleqdv 3340 . . . 4 ((𝑎 No 𝑏 No 𝑐 No ) → (∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂 ↔ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂))
3629, 34, 353anbi123d 1438 . . 3 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂) ↔ ((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂)))
37 no3inds.i . . 3 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜃 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜒 ∧ ∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜁) ∧ (∀𝑑 ∈ (( L ‘𝑎) ∪ ( R ‘𝑎))𝜓 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜏 ∧ ∀𝑒 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))𝜎) ∧ ∀𝑓 ∈ (( L ‘𝑐) ∪ ( R ‘𝑐))𝜂) → 𝜑))
3836, 37sylbid 243 . 2 ((𝑎 No 𝑏 No 𝑐 No ) → (((∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜃 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜒 ∧ ∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜁) ∧ (∀𝑑 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑎)𝜓 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜏 ∧ ∀𝑒 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑏)𝜎) ∧ ∀𝑓 ∈ Pred ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝑐)𝜂) → 𝜑))
391, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 38xpord3ind 33570 1 ((𝑋 No 𝑌 No 𝑍 No ) → 𝜆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wne 2943  wral 3064  cun 3881   class class class wbr 5069  {copab 5131   × cxp 5566  Predcpred 6177  cfv 6400  1st c1st 7780  2nd c2nd 7781   No csur 33613   L cleft 33799   R cright 33800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-se 5527  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-1o 8225  df-2o 8226  df-no 33616  df-slt 33617  df-bday 33618  df-sslt 33746  df-scut 33748  df-made 33801  df-old 33802  df-left 33804  df-right 33805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator