| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noxpordse | Structured version Visualization version GIF version | ||
| Description: Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
| Ref | Expression |
|---|---|
| noxpord.1 | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
| noxpord.2 | ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
| Ref | Expression |
|---|---|
| noxpordse | ⊢ 𝑆 Se ( No × No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noxpord.2 | . . 3 ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
| 2 | noxpord.1 | . . . . 5 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
| 3 | 2 | lrrecse 27910 | . . . 4 ⊢ 𝑅 Se No |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 Se No ) |
| 5 | 1, 4, 4 | sexp2 8152 | . 2 ⊢ (⊤ → 𝑆 Se ( No × No )) |
| 6 | 5 | mptru 1546 | 1 ⊢ 𝑆 Se ( No × No ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ≠ wne 2931 ∪ cun 3929 class class class wbr 5123 {copab 5185 Se wse 5615 × cxp 5663 ‘cfv 6540 1st c1st 7993 2nd c2nd 7994 No csur 27619 L cleft 27819 R cright 27820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-se 5618 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-iota 6493 df-fun 6542 df-fv 6548 df-1st 7995 df-2nd 7996 |
| This theorem is referenced by: norec2fn 27924 norec2ov 27925 |
| Copyright terms: Public domain | W3C validator |