![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noxpordse | Structured version Visualization version GIF version |
Description: Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.) |
Ref | Expression |
---|---|
noxpord.1 | ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} |
noxpord.2 | ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} |
Ref | Expression |
---|---|
noxpordse | ⊢ 𝑆 Se ( No × No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noxpord.2 | . . 3 ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑅(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
2 | noxpord.1 | . . . . 5 ⊢ 𝑅 = {〈𝑎, 𝑏〉 ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))} | |
3 | 2 | lrrecse 28001 | . . . 4 ⊢ 𝑅 Se No |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝑅 Se No ) |
5 | 1, 4, 4 | sexp2 8179 | . 2 ⊢ (⊤ → 𝑆 Se ( No × No )) |
6 | 5 | mptru 1546 | 1 ⊢ 𝑆 Se ( No × No ) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 848 ∧ w3a 1087 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2940 ∪ cun 3964 class class class wbr 5151 {copab 5213 Se wse 5643 × cxp 5691 ‘cfv 6569 1st c1st 8020 2nd c2nd 8021 No csur 27710 L cleft 27910 R cright 27911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-se 5646 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-iota 6522 df-fun 6571 df-fv 6577 df-1st 8022 df-2nd 8023 |
This theorem is referenced by: norec2fn 28015 norec2ov 28016 |
Copyright terms: Public domain | W3C validator |