MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noxpordse Structured version   Visualization version   GIF version

Theorem noxpordse 28003
Description: Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024.)
Hypotheses
Ref Expression
noxpord.1 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
noxpord.2 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
Assertion
Ref Expression
noxpordse 𝑆 Se ( No × No )
Distinct variable groups:   𝑥,𝑅,𝑦   𝑎,𝑏
Allowed substitution hints:   𝑅(𝑎,𝑏)   𝑆(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem noxpordse
StepHypRef Expression
1 noxpord.2 . . 3 𝑆 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑅(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
2 noxpord.1 . . . . 5 𝑅 = {⟨𝑎, 𝑏⟩ ∣ 𝑎 ∈ (( L ‘𝑏) ∪ ( R ‘𝑏))}
32lrrecse 27993 . . . 4 𝑅 Se No
43a1i 11 . . 3 (⊤ → 𝑅 Se No )
51, 4, 4sexp2 8187 . 2 (⊤ → 𝑆 Se ( No × No ))
65mptru 1544 1 𝑆 Se ( No × No )
Colors of variables: wff setvar class
Syntax hints:  wo 846  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  cun 3974   class class class wbr 5166  {copab 5228   Se wse 5650   × cxp 5698  cfv 6573  1st c1st 8028  2nd c2nd 8029   No csur 27702   L cleft 27902   R cright 27903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-se 5653  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  norec2fn  28007  norec2ov  28008
  Copyright terms: Public domain W3C validator