![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1comp | Structured version Visualization version GIF version |
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
Ref | Expression |
---|---|
mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
Ref | Expression |
---|---|
mat1comp | ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . 3 ⊢ (𝑖 = 𝐴 → (𝑖 = 𝑗 ↔ 𝐴 = 𝑗)) | |
2 | 1 | ifbid 4571 | . 2 ⊢ (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 )) |
3 | eqeq2 2752 | . . 3 ⊢ (𝑗 = 𝐽 → (𝐴 = 𝑗 ↔ 𝐴 = 𝐽)) | |
4 | 3 | ifbid 4571 | . 2 ⊢ (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 )) |
5 | mamumat1cl.i | . 2 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
6 | mamumat1cl.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
7 | 6 | fvexi 6936 | . . 3 ⊢ 1 ∈ V |
8 | mamumat1cl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
9 | 8 | fvexi 6936 | . . 3 ⊢ 0 ∈ V |
10 | 7, 9 | ifex 4598 | . 2 ⊢ if(𝐴 = 𝐽, 1 , 0 ) ∈ V |
11 | 2, 4, 5, 10 | ovmpo 7612 | 1 ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ifcif 4548 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 Fincfn 9005 Basecbs 17260 0gc0g 17501 1rcur 20210 Ringcrg 20262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 |
This theorem is referenced by: mamulid 22470 mamurid 22471 |
Copyright terms: Public domain | W3C validator |