![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1comp | Structured version Visualization version GIF version |
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
Ref | Expression |
---|---|
mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
Ref | Expression |
---|---|
mat1comp | ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2730 | . . 3 ⊢ (𝑖 = 𝐴 → (𝑖 = 𝑗 ↔ 𝐴 = 𝑗)) | |
2 | 1 | ifbid 4546 | . 2 ⊢ (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 )) |
3 | eqeq2 2738 | . . 3 ⊢ (𝑗 = 𝐽 → (𝐴 = 𝑗 ↔ 𝐴 = 𝐽)) | |
4 | 3 | ifbid 4546 | . 2 ⊢ (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 )) |
5 | mamumat1cl.i | . 2 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
6 | mamumat1cl.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
7 | 6 | fvexi 6898 | . . 3 ⊢ 1 ∈ V |
8 | mamumat1cl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
9 | 8 | fvexi 6898 | . . 3 ⊢ 0 ∈ V |
10 | 7, 9 | ifex 4573 | . 2 ⊢ if(𝐴 = 𝐽, 1 , 0 ) ∈ V |
11 | 2, 4, 5, 10 | ovmpo 7563 | 1 ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ifcif 4523 ‘cfv 6536 (class class class)co 7404 ∈ cmpo 7406 Fincfn 8938 Basecbs 17150 0gc0g 17391 1rcur 20083 Ringcrg 20135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 |
This theorem is referenced by: mamulid 22293 mamurid 22294 |
Copyright terms: Public domain | W3C validator |