| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1comp | Structured version Visualization version GIF version | ||
| Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
| Ref | Expression |
|---|---|
| mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
| mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
| mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
| mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| Ref | Expression |
|---|---|
| mat1comp | ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . . 3 ⊢ (𝑖 = 𝐴 → (𝑖 = 𝑗 ↔ 𝐴 = 𝑗)) | |
| 2 | 1 | ifbid 4494 | . 2 ⊢ (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 )) |
| 3 | eqeq2 2743 | . . 3 ⊢ (𝑗 = 𝐽 → (𝐴 = 𝑗 ↔ 𝐴 = 𝐽)) | |
| 4 | 3 | ifbid 4494 | . 2 ⊢ (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 )) |
| 5 | mamumat1cl.i | . 2 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
| 6 | mamumat1cl.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 7 | 6 | fvexi 6831 | . . 3 ⊢ 1 ∈ V |
| 8 | mamumat1cl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | 8 | fvexi 6831 | . . 3 ⊢ 0 ∈ V |
| 10 | 7, 9 | ifex 4521 | . 2 ⊢ if(𝐴 = 𝐽, 1 , 0 ) ∈ V |
| 11 | 2, 4, 5, 10 | ovmpo 7501 | 1 ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4470 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 Fincfn 8864 Basecbs 17115 0gc0g 17338 1rcur 20094 Ringcrg 20146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 |
| This theorem is referenced by: mamulid 22351 mamurid 22352 |
| Copyright terms: Public domain | W3C validator |