| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1comp | Structured version Visualization version GIF version | ||
| Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
| Ref | Expression |
|---|---|
| mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
| mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
| mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
| mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| Ref | Expression |
|---|---|
| mat1comp | ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . . 3 ⊢ (𝑖 = 𝐴 → (𝑖 = 𝑗 ↔ 𝐴 = 𝑗)) | |
| 2 | 1 | ifbid 4502 | . 2 ⊢ (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 )) |
| 3 | eqeq2 2741 | . . 3 ⊢ (𝑗 = 𝐽 → (𝐴 = 𝑗 ↔ 𝐴 = 𝐽)) | |
| 4 | 3 | ifbid 4502 | . 2 ⊢ (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 )) |
| 5 | mamumat1cl.i | . 2 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
| 6 | mamumat1cl.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 7 | 6 | fvexi 6840 | . . 3 ⊢ 1 ∈ V |
| 8 | mamumat1cl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | 8 | fvexi 6840 | . . 3 ⊢ 0 ∈ V |
| 10 | 7, 9 | ifex 4529 | . 2 ⊢ if(𝐴 = 𝐽, 1 , 0 ) ∈ V |
| 11 | 2, 4, 5, 10 | ovmpo 7513 | 1 ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4478 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Fincfn 8879 Basecbs 17138 0gc0g 17361 1rcur 20084 Ringcrg 20136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 |
| This theorem is referenced by: mamulid 22344 mamurid 22345 |
| Copyright terms: Public domain | W3C validator |