MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1comp Structured version   Visualization version   GIF version

Theorem mat1comp 21497
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
Assertion
Ref Expression
mat1comp ((𝐴𝑀𝐽𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 ))
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   𝐴,𝑖,𝑗   𝑖,𝐽,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐼(𝑖,𝑗)

Proof of Theorem mat1comp
StepHypRef Expression
1 eqeq1 2742 . . 3 (𝑖 = 𝐴 → (𝑖 = 𝑗𝐴 = 𝑗))
21ifbid 4479 . 2 (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 ))
3 eqeq2 2750 . . 3 (𝑗 = 𝐽 → (𝐴 = 𝑗𝐴 = 𝐽))
43ifbid 4479 . 2 (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 ))
5 mamumat1cl.i . 2 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
6 mamumat1cl.o . . . 4 1 = (1r𝑅)
76fvexi 6770 . . 3 1 ∈ V
8 mamumat1cl.z . . . 4 0 = (0g𝑅)
98fvexi 6770 . . 3 0 ∈ V
107, 9ifex 4506 . 2 if(𝐴 = 𝐽, 1 , 0 ) ∈ V
112, 4, 5, 10ovmpo 7411 1 ((𝐴𝑀𝐽𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4456  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691  Basecbs 16840  0gc0g 17067  1rcur 19652  Ringcrg 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  mamulid  21498  mamurid  21499
  Copyright terms: Public domain W3C validator