| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1comp | Structured version Visualization version GIF version | ||
| Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.) |
| Ref | Expression |
|---|---|
| mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
| mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
| mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
| mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| Ref | Expression |
|---|---|
| mat1comp | ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2737 | . . 3 ⊢ (𝑖 = 𝐴 → (𝑖 = 𝑗 ↔ 𝐴 = 𝑗)) | |
| 2 | 1 | ifbid 4500 | . 2 ⊢ (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 )) |
| 3 | eqeq2 2745 | . . 3 ⊢ (𝑗 = 𝐽 → (𝐴 = 𝑗 ↔ 𝐴 = 𝐽)) | |
| 4 | 3 | ifbid 4500 | . 2 ⊢ (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 )) |
| 5 | mamumat1cl.i | . 2 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
| 6 | mamumat1cl.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 7 | 6 | fvexi 6845 | . . 3 ⊢ 1 ∈ V |
| 8 | mamumat1cl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | 8 | fvexi 6845 | . . 3 ⊢ 0 ∈ V |
| 10 | 7, 9 | ifex 4527 | . 2 ⊢ if(𝐴 = 𝐽, 1 , 0 ) ∈ V |
| 11 | 2, 4, 5, 10 | ovmpo 7515 | 1 ⊢ ((𝐴 ∈ 𝑀 ∧ 𝐽 ∈ 𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ifcif 4476 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 Fincfn 8879 Basecbs 17127 0gc0g 17350 1rcur 20107 Ringcrg 20159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 |
| This theorem is referenced by: mamulid 22376 mamurid 22377 |
| Copyright terms: Public domain | W3C validator |