MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1comp Structured version   Visualization version   GIF version

Theorem mat1comp 22375
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
Assertion
Ref Expression
mat1comp ((𝐴𝑀𝐽𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 ))
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   𝐴,𝑖,𝑗   𝑖,𝐽,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐼(𝑖,𝑗)

Proof of Theorem mat1comp
StepHypRef Expression
1 eqeq1 2737 . . 3 (𝑖 = 𝐴 → (𝑖 = 𝑗𝐴 = 𝑗))
21ifbid 4500 . 2 (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 ))
3 eqeq2 2745 . . 3 (𝑗 = 𝐽 → (𝐴 = 𝑗𝐴 = 𝐽))
43ifbid 4500 . 2 (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 ))
5 mamumat1cl.i . 2 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
6 mamumat1cl.o . . . 4 1 = (1r𝑅)
76fvexi 6845 . . 3 1 ∈ V
8 mamumat1cl.z . . . 4 0 = (0g𝑅)
98fvexi 6845 . . 3 0 ∈ V
107, 9ifex 4527 . 2 if(𝐴 = 𝐽, 1 , 0 ) ∈ V
112, 4, 5, 10ovmpo 7515 1 ((𝐴𝑀𝐽𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ifcif 4476  cfv 6489  (class class class)co 7355  cmpo 7357  Fincfn 8879  Basecbs 17127  0gc0g 17350  1rcur 20107  Ringcrg 20159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360
This theorem is referenced by:  mamulid  22376  mamurid  22377
  Copyright terms: Public domain W3C validator