MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1comp Structured version   Visualization version   GIF version

Theorem mat1comp 21140
Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
Assertion
Ref Expression
mat1comp ((𝐴𝑀𝐽𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 ))
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   𝐴,𝑖,𝑗   𝑖,𝐽,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐼(𝑖,𝑗)

Proof of Theorem mat1comp
StepHypRef Expression
1 eqeq1 2762 . . 3 (𝑖 = 𝐴 → (𝑖 = 𝑗𝐴 = 𝑗))
21ifbid 4443 . 2 (𝑖 = 𝐴 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐴 = 𝑗, 1 , 0 ))
3 eqeq2 2770 . . 3 (𝑗 = 𝐽 → (𝐴 = 𝑗𝐴 = 𝐽))
43ifbid 4443 . 2 (𝑗 = 𝐽 → if(𝐴 = 𝑗, 1 , 0 ) = if(𝐴 = 𝐽, 1 , 0 ))
5 mamumat1cl.i . 2 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
6 mamumat1cl.o . . . 4 1 = (1r𝑅)
76fvexi 6672 . . 3 1 ∈ V
8 mamumat1cl.z . . . 4 0 = (0g𝑅)
98fvexi 6672 . . 3 0 ∈ V
107, 9ifex 4470 . 2 if(𝐴 = 𝐽, 1 , 0 ) ∈ V
112, 4, 5, 10ovmpo 7305 1 ((𝐴𝑀𝐽𝑀) → (𝐴𝐼𝐽) = if(𝐴 = 𝐽, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  ifcif 4420  cfv 6335  (class class class)co 7150  cmpo 7152  Fincfn 8527  Basecbs 16541  0gc0g 16771  1rcur 19319  Ringcrg 19365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155
This theorem is referenced by:  mamulid  21141  mamurid  21142
  Copyright terms: Public domain W3C validator