| Step | Hyp | Ref
| Expression |
| 1 | | mamurid.f |
. . . . 5
⊢ 𝐹 = (𝑅 maMul 〈𝑁, 𝑀, 𝑀〉) |
| 2 | | mamumat1cl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 3 | | eqid 2736 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | mamumat1cl.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → 𝑅 ∈ Ring) |
| 6 | | mamulid.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → 𝑁 ∈ Fin) |
| 8 | | mamumat1cl.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Fin) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → 𝑀 ∈ Fin) |
| 10 | | mamurid.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀))) |
| 11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀))) |
| 12 | | mamumat1cl.o |
. . . . . . 7
⊢ 1 =
(1r‘𝑅) |
| 13 | | mamumat1cl.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
| 14 | | mamumat1cl.i |
. . . . . . 7
⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
| 15 | 2, 4, 12, 13, 14, 8 | mamumat1cl 22382 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
| 16 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
| 17 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → 𝑙 ∈ 𝑁) |
| 18 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → 𝑚 ∈ 𝑀) |
| 19 | 1, 2, 3, 5, 7, 9, 9, 11, 16, 17, 18 | mamufv 22337 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑅 Σg (𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚))))) |
| 20 | | ringmnd 20208 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 21 | 5, 20 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → 𝑅 ∈ Mnd) |
| 22 | 4 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → 𝑅 ∈ Ring) |
| 23 | | elmapi 8868 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵) |
| 24 | 10, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋:(𝑁 × 𝑀)⟶𝐵) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → 𝑋:(𝑁 × 𝑀)⟶𝐵) |
| 26 | | simplrl 776 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → 𝑙 ∈ 𝑁) |
| 27 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → 𝑘 ∈ 𝑀) |
| 28 | 25, 26, 27 | fovcdmd 7584 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → (𝑙𝑋𝑘) ∈ 𝐵) |
| 29 | | elmapi 8868 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
| 30 | 15, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
| 32 | | simplrr 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → 𝑚 ∈ 𝑀) |
| 33 | 31, 27, 32 | fovcdmd 7584 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → (𝑘𝐼𝑚) ∈ 𝐵) |
| 34 | 2, 3 | ringcl 20215 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝐼𝑚) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)) ∈ 𝐵) |
| 35 | 22, 28, 33, 34 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)) ∈ 𝐵) |
| 36 | 35 | fmpttd 7110 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → (𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚))):𝑀⟶𝐵) |
| 37 | | simp2 1137 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚) → 𝑘 ∈ 𝑀) |
| 38 | 32 | 3adant3 1132 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚) → 𝑚 ∈ 𝑀) |
| 39 | 2, 4, 12, 13, 14, 8 | mat1comp 22383 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 )) |
| 40 | 37, 38, 39 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 )) |
| 41 | | ifnefalse 4517 |
. . . . . . . . . 10
⊢ (𝑘 ≠ 𝑚 → if(𝑘 = 𝑚, 1 , 0 ) = 0 ) |
| 42 | 41 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚) → if(𝑘 = 𝑚, 1 , 0 ) = 0 ) |
| 43 | 40, 42 | eqtrd 2771 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚) → (𝑘𝐼𝑚) = 0 ) |
| 44 | 43 | oveq2d 7426 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚) → ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑘)(.r‘𝑅) 0 )) |
| 45 | 2, 3, 13 | ringrz 20259 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r‘𝑅) 0 ) = 0 ) |
| 46 | 22, 28, 45 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀) → ((𝑙𝑋𝑘)(.r‘𝑅) 0 ) = 0 ) |
| 47 | 46 | 3adant3 1132 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚) → ((𝑙𝑋𝑘)(.r‘𝑅) 0 ) = 0 ) |
| 48 | 44, 47 | eqtrd 2771 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) ∧ 𝑘 ∈ 𝑀 ∧ 𝑘 ≠ 𝑚) → ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)) = 0 ) |
| 49 | 48, 9 | suppsssn 8205 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → ((𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚))) supp 0 ) ⊆ {𝑚}) |
| 50 | 2, 13, 21, 9, 18, 36, 49 | gsumpt 19948 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → (𝑅 Σg (𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)))) = ((𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)))‘𝑚)) |
| 51 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝑙𝑋𝑘) = (𝑙𝑋𝑚)) |
| 52 | | oveq1 7417 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → (𝑘𝐼𝑚) = (𝑚𝐼𝑚)) |
| 53 | 51, 52 | oveq12d 7428 |
. . . . . . 7
⊢ (𝑘 = 𝑚 → ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑚)(.r‘𝑅)(𝑚𝐼𝑚))) |
| 54 | | eqid 2736 |
. . . . . . 7
⊢ (𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚))) = (𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚))) |
| 55 | | ovex 7443 |
. . . . . . 7
⊢ ((𝑙𝑋𝑚)(.r‘𝑅)(𝑚𝐼𝑚)) ∈ V |
| 56 | 53, 54, 55 | fvmpt 6991 |
. . . . . 6
⊢ (𝑚 ∈ 𝑀 → ((𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r‘𝑅)(𝑚𝐼𝑚))) |
| 57 | 56 | ad2antll 729 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → ((𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r‘𝑅)(𝑚𝐼𝑚))) |
| 58 | | equequ1 2025 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑚 → (𝑖 = 𝑗 ↔ 𝑚 = 𝑗)) |
| 59 | 58 | ifbid 4529 |
. . . . . . . . 9
⊢ (𝑖 = 𝑚 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑗, 1 , 0 )) |
| 60 | | equequ2 2026 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑚 → (𝑚 = 𝑗 ↔ 𝑚 = 𝑚)) |
| 61 | 60 | ifbid 4529 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑚, 1 , 0 )) |
| 62 | | eqid 2736 |
. . . . . . . . . . 11
⊢ 𝑚 = 𝑚 |
| 63 | 62 | iftruei 4512 |
. . . . . . . . . 10
⊢ if(𝑚 = 𝑚, 1 , 0 ) = 1 |
| 64 | 61, 63 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = 1 ) |
| 65 | 12 | fvexi 6895 |
. . . . . . . . 9
⊢ 1 ∈
V |
| 66 | 59, 64, 14, 65 | ovmpo 7572 |
. . . . . . . 8
⊢ ((𝑚 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → (𝑚𝐼𝑚) = 1 ) |
| 67 | 66 | anidms 566 |
. . . . . . 7
⊢ (𝑚 ∈ 𝑀 → (𝑚𝐼𝑚) = 1 ) |
| 68 | 67 | oveq2d 7426 |
. . . . . 6
⊢ (𝑚 ∈ 𝑀 → ((𝑙𝑋𝑚)(.r‘𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r‘𝑅) 1 )) |
| 69 | 68 | ad2antll 729 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → ((𝑙𝑋𝑚)(.r‘𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r‘𝑅) 1 )) |
| 70 | 24 | fovcdmda 7583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → (𝑙𝑋𝑚) ∈ 𝐵) |
| 71 | 2, 3, 12 | ringridm 20235 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑚) ∈ 𝐵) → ((𝑙𝑋𝑚)(.r‘𝑅) 1 ) = (𝑙𝑋𝑚)) |
| 72 | 5, 70, 71 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → ((𝑙𝑋𝑚)(.r‘𝑅) 1 ) = (𝑙𝑋𝑚)) |
| 73 | 57, 69, 72 | 3eqtrd 2775 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → ((𝑘 ∈ 𝑀 ↦ ((𝑙𝑋𝑘)(.r‘𝑅)(𝑘𝐼𝑚)))‘𝑚) = (𝑙𝑋𝑚)) |
| 74 | 19, 50, 73 | 3eqtrd 2775 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑁 ∧ 𝑚 ∈ 𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)) |
| 75 | 74 | ralrimivva 3188 |
. 2
⊢ (𝜑 → ∀𝑙 ∈ 𝑁 ∀𝑚 ∈ 𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)) |
| 76 | 2, 4, 1, 6, 8, 8, 10, 15 | mamucl 22344 |
. . . . 5
⊢ (𝜑 → (𝑋𝐹𝐼) ∈ (𝐵 ↑m (𝑁 × 𝑀))) |
| 77 | | elmapi 8868 |
. . . . 5
⊢ ((𝑋𝐹𝐼) ∈ (𝐵 ↑m (𝑁 × 𝑀)) → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵) |
| 78 | 76, 77 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵) |
| 79 | 78 | ffnd 6712 |
. . 3
⊢ (𝜑 → (𝑋𝐹𝐼) Fn (𝑁 × 𝑀)) |
| 80 | 24 | ffnd 6712 |
. . 3
⊢ (𝜑 → 𝑋 Fn (𝑁 × 𝑀)) |
| 81 | | eqfnov2 7542 |
. . 3
⊢ (((𝑋𝐹𝐼) Fn (𝑁 × 𝑀) ∧ 𝑋 Fn (𝑁 × 𝑀)) → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙 ∈ 𝑁 ∀𝑚 ∈ 𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))) |
| 82 | 79, 80, 81 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙 ∈ 𝑁 ∀𝑚 ∈ 𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))) |
| 83 | 75, 82 | mpbird 257 |
1
⊢ (𝜑 → (𝑋𝐹𝐼) = 𝑋) |