MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamurid Structured version   Visualization version   GIF version

Theorem mamurid 22364
Description: The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamurid.f 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
mamurid.x (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
Assertion
Ref Expression
mamurid (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamurid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamurid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2728 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Ring)
6 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
76adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑁 ∈ Fin)
8 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
98adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑀 ∈ Fin)
10 mamurid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
1110adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
12 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
13 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
14 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
152, 4, 12, 13, 14, 8mamumat1cl 22361 . . . . . 6 (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
1615adantr 479 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
17 simprl 769 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑙𝑁)
18 simprr 771 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑚𝑀)
191, 2, 3, 5, 7, 9, 9, 11, 16, 17, 18mamufv 22309 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))))
20 ringmnd 20190 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Mnd)
224ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑅 ∈ Ring)
23 elmapi 8874 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
2410, 23syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑁 × 𝑀)⟶𝐵)
2524ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
26 simplrl 775 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑙𝑁)
27 simpr 483 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑘𝑀)
2825, 26, 27fovcdmd 7599 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑙𝑋𝑘) ∈ 𝐵)
29 elmapi 8874 . . . . . . . . . 10 (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
3130ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
32 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑚𝑀)
3331, 27, 32fovcdmd 7599 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑘𝐼𝑚) ∈ 𝐵)
342, 3ringcl 20197 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝐼𝑚) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1368 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3635fmpttd 7130 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))):𝑀𝐵)
37 simp2 1134 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑘𝑀)
38323adant3 1129 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑚𝑀)
392, 4, 12, 13, 14, 8mat1comp 22362 . . . . . . . . . 10 ((𝑘𝑀𝑚𝑀) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
4037, 38, 39syl2anc 582 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
41 ifnefalse 4544 . . . . . . . . . 10 (𝑘𝑚 → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
42413ad2ant3 1132 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
4340, 42eqtrd 2768 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = 0 )
4443oveq2d 7442 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑘)(.r𝑅) 0 ))
452, 3, 13ringrz 20237 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4622, 28, 45syl2anc 582 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
47463adant3 1129 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4844, 47eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = 0 )
4948, 9suppsssn 8213 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) supp 0 ) ⊆ {𝑚})
502, 13, 21, 9, 18, 36, 49gsumpt 19924 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))) = ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚))
51 oveq2 7434 . . . . . . . 8 (𝑘 = 𝑚 → (𝑙𝑋𝑘) = (𝑙𝑋𝑚))
52 oveq1 7433 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐼𝑚) = (𝑚𝐼𝑚))
5351, 52oveq12d 7444 . . . . . . 7 (𝑘 = 𝑚 → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
54 eqid 2728 . . . . . . 7 (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) = (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))
55 ovex 7459 . . . . . . 7 ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) ∈ V
5653, 54, 55fvmpt 7010 . . . . . 6 (𝑚𝑀 → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
5756ad2antll 727 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
58 equequ1 2020 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝑖 = 𝑗𝑚 = 𝑗))
5958ifbid 4555 . . . . . . . . 9 (𝑖 = 𝑚 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑗, 1 , 0 ))
60 equequ2 2021 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝑚 = 𝑗𝑚 = 𝑚))
6160ifbid 4555 . . . . . . . . . 10 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑚, 1 , 0 ))
62 eqid 2728 . . . . . . . . . . 11 𝑚 = 𝑚
6362iftruei 4539 . . . . . . . . . 10 if(𝑚 = 𝑚, 1 , 0 ) = 1
6461, 63eqtrdi 2784 . . . . . . . . 9 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = 1 )
6512fvexi 6916 . . . . . . . . 9 1 ∈ V
6659, 64, 14, 65ovmpo 7587 . . . . . . . 8 ((𝑚𝑀𝑚𝑀) → (𝑚𝐼𝑚) = 1 )
6766anidms 565 . . . . . . 7 (𝑚𝑀 → (𝑚𝐼𝑚) = 1 )
6867oveq2d 7442 . . . . . 6 (𝑚𝑀 → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
6968ad2antll 727 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
7024fovcdmda 7598 . . . . . 6 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙𝑋𝑚) ∈ 𝐵)
712, 3, 12ringridm 20213 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑚) ∈ 𝐵) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
725, 70, 71syl2anc 582 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
7357, 69, 723eqtrd 2772 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = (𝑙𝑋𝑚))
7419, 50, 733eqtrd 2772 . . 3 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
7574ralrimivva 3198 . 2 (𝜑 → ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
762, 4, 1, 6, 8, 8, 10, 15mamucl 22321 . . . . 5 (𝜑 → (𝑋𝐹𝐼) ∈ (𝐵m (𝑁 × 𝑀)))
77 elmapi 8874 . . . . 5 ((𝑋𝐹𝐼) ∈ (𝐵m (𝑁 × 𝑀)) → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7876, 77syl 17 . . . 4 (𝜑 → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7978ffnd 6728 . . 3 (𝜑 → (𝑋𝐹𝐼) Fn (𝑁 × 𝑀))
8024ffnd 6728 . . 3 (𝜑𝑋 Fn (𝑁 × 𝑀))
81 eqfnov2 7557 . . 3 (((𝑋𝐹𝐼) Fn (𝑁 × 𝑀) ∧ 𝑋 Fn (𝑁 × 𝑀)) → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8279, 80, 81syl2anc 582 . 2 (𝜑 → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8375, 82mpbird 256 1 (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  ifcif 4532  cotp 4640  cmpt 5235   × cxp 5680   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  cmpo 7428  m cmap 8851  Fincfn 8970  Basecbs 17187  .rcmulr 17241  0gc0g 17428   Σg cgsu 17429  Mndcmnd 18701  1rcur 20128  Ringcrg 20180   maMul cmmul 22305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-0g 17430  df-gsum 17431  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-grp 18900  df-minusg 18901  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-mamu 22306
This theorem is referenced by:  matring  22365  mat1  22369
  Copyright terms: Public domain W3C validator