MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamurid Structured version   Visualization version   GIF version

Theorem mamurid 21339
Description: The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamurid.f 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
mamurid.x (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
Assertion
Ref Expression
mamurid (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamurid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamurid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2737 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 484 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Ring)
6 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
76adantr 484 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑁 ∈ Fin)
8 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
98adantr 484 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑀 ∈ Fin)
10 mamurid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
1110adantr 484 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
12 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
13 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
14 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
152, 4, 12, 13, 14, 8mamumat1cl 21336 . . . . . 6 (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
1615adantr 484 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
17 simprl 771 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑙𝑁)
18 simprr 773 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑚𝑀)
191, 2, 3, 5, 7, 9, 9, 11, 16, 17, 18mamufv 21286 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))))
20 ringmnd 19572 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Mnd)
224ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑅 ∈ Ring)
23 elmapi 8530 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
2410, 23syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑁 × 𝑀)⟶𝐵)
2524ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
26 simplrl 777 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑙𝑁)
27 simpr 488 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑘𝑀)
2825, 26, 27fovrnd 7380 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑙𝑋𝑘) ∈ 𝐵)
29 elmapi 8530 . . . . . . . . . 10 (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
3130ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
32 simplrr 778 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑚𝑀)
3331, 27, 32fovrnd 7380 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑘𝐼𝑚) ∈ 𝐵)
342, 3ringcl 19579 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝐼𝑚) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3635fmpttd 6932 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))):𝑀𝐵)
37 simp2 1139 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑘𝑀)
38323adant3 1134 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑚𝑀)
392, 4, 12, 13, 14, 8mat1comp 21337 . . . . . . . . . 10 ((𝑘𝑀𝑚𝑀) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
4037, 38, 39syl2anc 587 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
41 ifnefalse 4451 . . . . . . . . . 10 (𝑘𝑚 → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
42413ad2ant3 1137 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
4340, 42eqtrd 2777 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = 0 )
4443oveq2d 7229 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑘)(.r𝑅) 0 ))
452, 3, 13ringrz 19606 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4622, 28, 45syl2anc 587 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
47463adant3 1134 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4844, 47eqtrd 2777 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = 0 )
4948, 9suppsssn 7943 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) supp 0 ) ⊆ {𝑚})
502, 13, 21, 9, 18, 36, 49gsumpt 19347 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))) = ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚))
51 oveq2 7221 . . . . . . . 8 (𝑘 = 𝑚 → (𝑙𝑋𝑘) = (𝑙𝑋𝑚))
52 oveq1 7220 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐼𝑚) = (𝑚𝐼𝑚))
5351, 52oveq12d 7231 . . . . . . 7 (𝑘 = 𝑚 → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
54 eqid 2737 . . . . . . 7 (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) = (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))
55 ovex 7246 . . . . . . 7 ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) ∈ V
5653, 54, 55fvmpt 6818 . . . . . 6 (𝑚𝑀 → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
5756ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
58 equequ1 2033 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝑖 = 𝑗𝑚 = 𝑗))
5958ifbid 4462 . . . . . . . . 9 (𝑖 = 𝑚 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑗, 1 , 0 ))
60 equequ2 2034 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝑚 = 𝑗𝑚 = 𝑚))
6160ifbid 4462 . . . . . . . . . 10 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑚, 1 , 0 ))
62 eqid 2737 . . . . . . . . . . 11 𝑚 = 𝑚
6362iftruei 4446 . . . . . . . . . 10 if(𝑚 = 𝑚, 1 , 0 ) = 1
6461, 63eqtrdi 2794 . . . . . . . . 9 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = 1 )
6512fvexi 6731 . . . . . . . . 9 1 ∈ V
6659, 64, 14, 65ovmpo 7369 . . . . . . . 8 ((𝑚𝑀𝑚𝑀) → (𝑚𝐼𝑚) = 1 )
6766anidms 570 . . . . . . 7 (𝑚𝑀 → (𝑚𝐼𝑚) = 1 )
6867oveq2d 7229 . . . . . 6 (𝑚𝑀 → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
6968ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
7024fovrnda 7379 . . . . . 6 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙𝑋𝑚) ∈ 𝐵)
712, 3, 12ringridm 19590 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑚) ∈ 𝐵) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
725, 70, 71syl2anc 587 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
7357, 69, 723eqtrd 2781 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = (𝑙𝑋𝑚))
7419, 50, 733eqtrd 2781 . . 3 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
7574ralrimivva 3112 . 2 (𝜑 → ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
762, 4, 1, 6, 8, 8, 10, 15mamucl 21298 . . . . 5 (𝜑 → (𝑋𝐹𝐼) ∈ (𝐵m (𝑁 × 𝑀)))
77 elmapi 8530 . . . . 5 ((𝑋𝐹𝐼) ∈ (𝐵m (𝑁 × 𝑀)) → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7876, 77syl 17 . . . 4 (𝜑 → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7978ffnd 6546 . . 3 (𝜑 → (𝑋𝐹𝐼) Fn (𝑁 × 𝑀))
8024ffnd 6546 . . 3 (𝜑𝑋 Fn (𝑁 × 𝑀))
81 eqfnov2 7340 . . 3 (((𝑋𝐹𝐼) Fn (𝑁 × 𝑀) ∧ 𝑋 Fn (𝑁 × 𝑀)) → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8279, 80, 81syl2anc 587 . 2 (𝜑 → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8375, 82mpbird 260 1 (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  ifcif 4439  cotp 4549  cmpt 5135   × cxp 5549   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  cmpo 7215  m cmap 8508  Fincfn 8626  Basecbs 16760  .rcmulr 16803  0gc0g 16944   Σg cgsu 16945  Mndcmnd 18173  1rcur 19516  Ringcrg 19562   maMul cmmul 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-mamu 21283
This theorem is referenced by:  matring  21340  mat1  21344
  Copyright terms: Public domain W3C validator