MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamurid Structured version   Visualization version   GIF version

Theorem mamurid 21807
Description: The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamurid.f 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
mamurid.x (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
Assertion
Ref Expression
mamurid (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamurid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamurid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2737 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 482 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Ring)
6 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
76adantr 482 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑁 ∈ Fin)
8 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
98adantr 482 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑀 ∈ Fin)
10 mamurid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
1110adantr 482 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
12 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
13 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
14 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
152, 4, 12, 13, 14, 8mamumat1cl 21804 . . . . . 6 (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
1615adantr 482 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
17 simprl 770 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑙𝑁)
18 simprr 772 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑚𝑀)
191, 2, 3, 5, 7, 9, 9, 11, 16, 17, 18mamufv 21752 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))))
20 ringmnd 19981 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Mnd)
224ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑅 ∈ Ring)
23 elmapi 8794 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
2410, 23syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑁 × 𝑀)⟶𝐵)
2524ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
26 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑙𝑁)
27 simpr 486 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑘𝑀)
2825, 26, 27fovcdmd 7531 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑙𝑋𝑘) ∈ 𝐵)
29 elmapi 8794 . . . . . . . . . 10 (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
3130ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
32 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑚𝑀)
3331, 27, 32fovcdmd 7531 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑘𝐼𝑚) ∈ 𝐵)
342, 3ringcl 19988 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝐼𝑚) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1372 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3635fmpttd 7068 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))):𝑀𝐵)
37 simp2 1138 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑘𝑀)
38323adant3 1133 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑚𝑀)
392, 4, 12, 13, 14, 8mat1comp 21805 . . . . . . . . . 10 ((𝑘𝑀𝑚𝑀) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
4037, 38, 39syl2anc 585 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
41 ifnefalse 4503 . . . . . . . . . 10 (𝑘𝑚 → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
42413ad2ant3 1136 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
4340, 42eqtrd 2777 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = 0 )
4443oveq2d 7378 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑘)(.r𝑅) 0 ))
452, 3, 13ringrz 20019 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4622, 28, 45syl2anc 585 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
47463adant3 1133 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4844, 47eqtrd 2777 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = 0 )
4948, 9suppsssn 8137 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) supp 0 ) ⊆ {𝑚})
502, 13, 21, 9, 18, 36, 49gsumpt 19746 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))) = ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚))
51 oveq2 7370 . . . . . . . 8 (𝑘 = 𝑚 → (𝑙𝑋𝑘) = (𝑙𝑋𝑚))
52 oveq1 7369 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐼𝑚) = (𝑚𝐼𝑚))
5351, 52oveq12d 7380 . . . . . . 7 (𝑘 = 𝑚 → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
54 eqid 2737 . . . . . . 7 (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) = (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))
55 ovex 7395 . . . . . . 7 ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) ∈ V
5653, 54, 55fvmpt 6953 . . . . . 6 (𝑚𝑀 → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
5756ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
58 equequ1 2029 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝑖 = 𝑗𝑚 = 𝑗))
5958ifbid 4514 . . . . . . . . 9 (𝑖 = 𝑚 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑗, 1 , 0 ))
60 equequ2 2030 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝑚 = 𝑗𝑚 = 𝑚))
6160ifbid 4514 . . . . . . . . . 10 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑚, 1 , 0 ))
62 eqid 2737 . . . . . . . . . . 11 𝑚 = 𝑚
6362iftruei 4498 . . . . . . . . . 10 if(𝑚 = 𝑚, 1 , 0 ) = 1
6461, 63eqtrdi 2793 . . . . . . . . 9 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = 1 )
6512fvexi 6861 . . . . . . . . 9 1 ∈ V
6659, 64, 14, 65ovmpo 7520 . . . . . . . 8 ((𝑚𝑀𝑚𝑀) → (𝑚𝐼𝑚) = 1 )
6766anidms 568 . . . . . . 7 (𝑚𝑀 → (𝑚𝐼𝑚) = 1 )
6867oveq2d 7378 . . . . . 6 (𝑚𝑀 → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
6968ad2antll 728 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
7024fovcdmda 7530 . . . . . 6 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙𝑋𝑚) ∈ 𝐵)
712, 3, 12ringridm 20000 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑚) ∈ 𝐵) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
725, 70, 71syl2anc 585 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
7357, 69, 723eqtrd 2781 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = (𝑙𝑋𝑚))
7419, 50, 733eqtrd 2781 . . 3 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
7574ralrimivva 3198 . 2 (𝜑 → ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
762, 4, 1, 6, 8, 8, 10, 15mamucl 21764 . . . . 5 (𝜑 → (𝑋𝐹𝐼) ∈ (𝐵m (𝑁 × 𝑀)))
77 elmapi 8794 . . . . 5 ((𝑋𝐹𝐼) ∈ (𝐵m (𝑁 × 𝑀)) → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7876, 77syl 17 . . . 4 (𝜑 → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7978ffnd 6674 . . 3 (𝜑 → (𝑋𝐹𝐼) Fn (𝑁 × 𝑀))
8024ffnd 6674 . . 3 (𝜑𝑋 Fn (𝑁 × 𝑀))
81 eqfnov2 7491 . . 3 (((𝑋𝐹𝐼) Fn (𝑁 × 𝑀) ∧ 𝑋 Fn (𝑁 × 𝑀)) → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8279, 80, 81syl2anc 585 . 2 (𝜑 → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8375, 82mpbird 257 1 (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2944  wral 3065  ifcif 4491  cotp 4599  cmpt 5193   × cxp 5636   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  cmpo 7364  m cmap 8772  Fincfn 8890  Basecbs 17090  .rcmulr 17141  0gc0g 17328   Σg cgsu 17329  Mndcmnd 18563  1rcur 19920  Ringcrg 19971   maMul cmmul 21748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-ot 4600  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-seq 13914  df-hash 14238  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-0g 17330  df-gsum 17331  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-submnd 18609  df-grp 18758  df-minusg 18759  df-mulg 18880  df-cntz 19104  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-mamu 21749
This theorem is referenced by:  matring  21808  mat1  21812
  Copyright terms: Public domain W3C validator