MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamurid Structured version   Visualization version   GIF version

Theorem mamurid 22385
Description: The identity matrix (as operation in maps-to notation) is a right identity (for any matrix with the same number of columns). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamurid.f 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
mamurid.x (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
Assertion
Ref Expression
mamurid (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamurid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamurid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑁, 𝑀, 𝑀⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2736 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Ring)
6 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑁 ∈ Fin)
8 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
98adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑀 ∈ Fin)
10 mamurid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑋 ∈ (𝐵m (𝑁 × 𝑀)))
12 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
13 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
14 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
152, 4, 12, 13, 14, 8mamumat1cl 22382 . . . . . 6 (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
1615adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
17 simprl 770 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑙𝑁)
18 simprr 772 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑚𝑀)
191, 2, 3, 5, 7, 9, 9, 11, 16, 17, 18mamufv 22337 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))))
20 ringmnd 20208 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → 𝑅 ∈ Mnd)
224ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑅 ∈ Ring)
23 elmapi 8868 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑁 × 𝑀)) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
2410, 23syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑁 × 𝑀)⟶𝐵)
2524ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑋:(𝑁 × 𝑀)⟶𝐵)
26 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑙𝑁)
27 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑘𝑀)
2825, 26, 27fovcdmd 7584 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑙𝑋𝑘) ∈ 𝐵)
29 elmapi 8868 . . . . . . . . . 10 (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
3130ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
32 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → 𝑚𝑀)
3331, 27, 32fovcdmd 7584 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → (𝑘𝐼𝑚) ∈ 𝐵)
342, 3ringcl 20215 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝐼𝑚) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) ∈ 𝐵)
3635fmpttd 7110 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))):𝑀𝐵)
37 simp2 1137 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑘𝑀)
38323adant3 1132 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → 𝑚𝑀)
392, 4, 12, 13, 14, 8mat1comp 22383 . . . . . . . . . 10 ((𝑘𝑀𝑚𝑀) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
4037, 38, 39syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = if(𝑘 = 𝑚, 1 , 0 ))
41 ifnefalse 4517 . . . . . . . . . 10 (𝑘𝑚 → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
42413ad2ant3 1135 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → if(𝑘 = 𝑚, 1 , 0 ) = 0 )
4340, 42eqtrd 2771 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → (𝑘𝐼𝑚) = 0 )
4443oveq2d 7426 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑘)(.r𝑅) 0 ))
452, 3, 13ringrz 20259 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4622, 28, 45syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
47463adant3 1132 . . . . . . 7 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅) 0 ) = 0 )
4844, 47eqtrd 2771 . . . . . 6 (((𝜑 ∧ (𝑙𝑁𝑚𝑀)) ∧ 𝑘𝑀𝑘𝑚) → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = 0 )
4948, 9suppsssn 8205 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) supp 0 ) ⊆ {𝑚})
502, 13, 21, 9, 18, 36, 49gsumpt 19948 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑅 Σg (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))) = ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚))
51 oveq2 7418 . . . . . . . 8 (𝑘 = 𝑚 → (𝑙𝑋𝑘) = (𝑙𝑋𝑚))
52 oveq1 7417 . . . . . . . 8 (𝑘 = 𝑚 → (𝑘𝐼𝑚) = (𝑚𝐼𝑚))
5351, 52oveq12d 7428 . . . . . . 7 (𝑘 = 𝑚 → ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
54 eqid 2736 . . . . . . 7 (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚))) = (𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))
55 ovex 7443 . . . . . . 7 ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) ∈ V
5653, 54, 55fvmpt 6991 . . . . . 6 (𝑚𝑀 → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
5756ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)))
58 equequ1 2025 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝑖 = 𝑗𝑚 = 𝑗))
5958ifbid 4529 . . . . . . . . 9 (𝑖 = 𝑚 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑗, 1 , 0 ))
60 equequ2 2026 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝑚 = 𝑗𝑚 = 𝑚))
6160ifbid 4529 . . . . . . . . . 10 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = if(𝑚 = 𝑚, 1 , 0 ))
62 eqid 2736 . . . . . . . . . . 11 𝑚 = 𝑚
6362iftruei 4512 . . . . . . . . . 10 if(𝑚 = 𝑚, 1 , 0 ) = 1
6461, 63eqtrdi 2787 . . . . . . . . 9 (𝑗 = 𝑚 → if(𝑚 = 𝑗, 1 , 0 ) = 1 )
6512fvexi 6895 . . . . . . . . 9 1 ∈ V
6659, 64, 14, 65ovmpo 7572 . . . . . . . 8 ((𝑚𝑀𝑚𝑀) → (𝑚𝐼𝑚) = 1 )
6766anidms 566 . . . . . . 7 (𝑚𝑀 → (𝑚𝐼𝑚) = 1 )
6867oveq2d 7426 . . . . . 6 (𝑚𝑀 → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
6968ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅)(𝑚𝐼𝑚)) = ((𝑙𝑋𝑚)(.r𝑅) 1 ))
7024fovcdmda 7583 . . . . . 6 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙𝑋𝑚) ∈ 𝐵)
712, 3, 12ringridm 20235 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑚) ∈ 𝐵) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
725, 70, 71syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑙𝑋𝑚)(.r𝑅) 1 ) = (𝑙𝑋𝑚))
7357, 69, 723eqtrd 2775 . . . 4 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → ((𝑘𝑀 ↦ ((𝑙𝑋𝑘)(.r𝑅)(𝑘𝐼𝑚)))‘𝑚) = (𝑙𝑋𝑚))
7419, 50, 733eqtrd 2775 . . 3 ((𝜑 ∧ (𝑙𝑁𝑚𝑀)) → (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
7574ralrimivva 3188 . 2 (𝜑 → ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚))
762, 4, 1, 6, 8, 8, 10, 15mamucl 22344 . . . . 5 (𝜑 → (𝑋𝐹𝐼) ∈ (𝐵m (𝑁 × 𝑀)))
77 elmapi 8868 . . . . 5 ((𝑋𝐹𝐼) ∈ (𝐵m (𝑁 × 𝑀)) → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7876, 77syl 17 . . . 4 (𝜑 → (𝑋𝐹𝐼):(𝑁 × 𝑀)⟶𝐵)
7978ffnd 6712 . . 3 (𝜑 → (𝑋𝐹𝐼) Fn (𝑁 × 𝑀))
8024ffnd 6712 . . 3 (𝜑𝑋 Fn (𝑁 × 𝑀))
81 eqfnov2 7542 . . 3 (((𝑋𝐹𝐼) Fn (𝑁 × 𝑀) ∧ 𝑋 Fn (𝑁 × 𝑀)) → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8279, 80, 81syl2anc 584 . 2 (𝜑 → ((𝑋𝐹𝐼) = 𝑋 ↔ ∀𝑙𝑁𝑚𝑀 (𝑙(𝑋𝐹𝐼)𝑚) = (𝑙𝑋𝑚)))
8375, 82mpbird 257 1 (𝜑 → (𝑋𝐹𝐼) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  ifcif 4505  cotp 4614  cmpt 5206   × cxp 5657   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  m cmap 8845  Fincfn 8964  Basecbs 17233  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  1rcur 20146  Ringcrg 20198   maMul cmmul 22333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-mamu 22334
This theorem is referenced by:  matring  22386  mat1  22390
  Copyright terms: Public domain W3C validator