![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mamumat1cl | Structured version Visualization version GIF version |
Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
Ref | Expression |
---|---|
mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
Ref | Expression |
---|---|
mamumat1cl | ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamumat1cl.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | mamumat1cl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mamumat1cl.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 20082 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
5 | mamumat1cl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | ring0cl 20083 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
7 | 4, 6 | ifcld 4574 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀)) → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
10 | 9 | ralrimivva 3200 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
11 | mamumat1cl.i | . . . 4 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
12 | 11 | fmpo 8053 | . . 3 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵 ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵) |
13 | 10, 12 | sylib 217 | . 2 ⊢ (𝜑 → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
14 | 2 | fvexi 6905 | . . 3 ⊢ 𝐵 ∈ V |
15 | mamumat1cl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
16 | xpfi 9316 | . . . 4 ⊢ ((𝑀 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑀 × 𝑀) ∈ Fin) | |
17 | 15, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 × 𝑀) ∈ Fin) |
18 | elmapg 8832 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑀) ∈ Fin) → (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) | |
19 | 14, 17, 18 | sylancr 587 | . 2 ⊢ (𝜑 → (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) |
20 | 13, 19 | mpbird 256 | 1 ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ifcif 4528 × cxp 5674 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 ↑m cmap 8819 Fincfn 8938 Basecbs 17143 0gc0g 17384 1rcur 20003 Ringcrg 20055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-mgp 19987 df-ur 20004 df-ring 20057 |
This theorem is referenced by: mamulid 21942 mamurid 21943 matring 21944 mat1 21948 |
Copyright terms: Public domain | W3C validator |