![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mamumat1cl | Structured version Visualization version GIF version |
Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
Ref | Expression |
---|---|
mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
Ref | Expression |
---|---|
mamumat1cl | ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamumat1cl.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | mamumat1cl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mamumat1cl.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 19989 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
5 | mamumat1cl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | ring0cl 19990 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
7 | 4, 6 | ifcld 4532 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀)) → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
10 | 9 | ralrimivva 3197 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
11 | mamumat1cl.i | . . . 4 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
12 | 11 | fmpo 8000 | . . 3 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵 ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵) |
13 | 10, 12 | sylib 217 | . 2 ⊢ (𝜑 → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
14 | 2 | fvexi 6856 | . . 3 ⊢ 𝐵 ∈ V |
15 | mamumat1cl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
16 | xpfi 9261 | . . . 4 ⊢ ((𝑀 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑀 × 𝑀) ∈ Fin) | |
17 | 15, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 × 𝑀) ∈ Fin) |
18 | elmapg 8778 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑀) ∈ Fin) → (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) | |
19 | 14, 17, 18 | sylancr 587 | . 2 ⊢ (𝜑 → (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) |
20 | 13, 19 | mpbird 256 | 1 ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 ifcif 4486 × cxp 5631 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ↑m cmap 8765 Fincfn 8883 Basecbs 17083 0gc0g 17321 1rcur 19913 Ringcrg 19964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-mgp 19897 df-ur 19914 df-ring 19966 |
This theorem is referenced by: mamulid 21790 mamurid 21791 matring 21792 mat1 21796 |
Copyright terms: Public domain | W3C validator |