| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mamumat1cl | Structured version Visualization version GIF version | ||
| Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
| mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
| mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
| mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| Ref | Expression |
|---|---|
| mamumat1cl | ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamumat1cl.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | mamumat1cl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | mamumat1cl.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
| 4 | 2, 3 | ringidcl 20225 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 5 | mamumat1cl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 6 | 2, 5 | ring0cl 20227 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| 7 | 4, 6 | ifcld 4547 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
| 8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀)) → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
| 10 | 9 | ralrimivva 3187 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
| 11 | mamumat1cl.i | . . . 4 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
| 12 | 11 | fmpo 8067 | . . 3 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵 ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵) |
| 13 | 10, 12 | sylib 218 | . 2 ⊢ (𝜑 → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
| 14 | 2 | fvexi 6890 | . . 3 ⊢ 𝐵 ∈ V |
| 15 | mamumat1cl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
| 16 | xpfi 9330 | . . . 4 ⊢ ((𝑀 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑀 × 𝑀) ∈ Fin) | |
| 17 | 15, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀 × 𝑀) ∈ Fin) |
| 18 | elmapg 8853 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑀) ∈ Fin) → (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) | |
| 19 | 14, 17, 18 | sylancr 587 | . 2 ⊢ (𝜑 → (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) |
| 20 | 13, 19 | mpbird 257 | 1 ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ifcif 4500 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8840 Fincfn 8959 Basecbs 17228 0gc0g 17453 1rcur 20141 Ringcrg 20193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-mgp 20101 df-ur 20142 df-ring 20195 |
| This theorem is referenced by: mamulid 22379 mamurid 22380 matring 22381 mat1 22385 |
| Copyright terms: Public domain | W3C validator |