Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mamumat1cl | Structured version Visualization version GIF version |
Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
Ref | Expression |
---|---|
mamumat1cl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamumat1cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamumat1cl.o | ⊢ 1 = (1r‘𝑅) |
mamumat1cl.z | ⊢ 0 = (0g‘𝑅) |
mamumat1cl.i | ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
mamumat1cl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
Ref | Expression |
---|---|
mamumat1cl | ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamumat1cl.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | mamumat1cl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mamumat1cl.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 19722 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
5 | mamumat1cl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | ring0cl 19723 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
7 | 4, 6 | ifcld 4502 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑗 ∈ 𝑀)) → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
10 | 9 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵) |
11 | mamumat1cl.i | . . . 4 ⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) | |
12 | 11 | fmpo 7881 | . . 3 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑗 ∈ 𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵 ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵) |
13 | 10, 12 | sylib 217 | . 2 ⊢ (𝜑 → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
14 | 2 | fvexi 6770 | . . 3 ⊢ 𝐵 ∈ V |
15 | mamumat1cl.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
16 | xpfi 9015 | . . . 4 ⊢ ((𝑀 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑀 × 𝑀) ∈ Fin) | |
17 | 15, 15, 16 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑀 × 𝑀) ∈ Fin) |
18 | elmapg 8586 | . . 3 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑀) ∈ Fin) → (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) | |
19 | 14, 17, 18 | sylancr 586 | . 2 ⊢ (𝜑 → (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵)) |
20 | 13, 19 | mpbird 256 | 1 ⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ifcif 4456 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 Fincfn 8691 Basecbs 16840 0gc0g 17067 1rcur 19652 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-mgp 19636 df-ur 19653 df-ring 19700 |
This theorem is referenced by: mamulid 21498 mamurid 21499 matring 21500 mat1 21504 |
Copyright terms: Public domain | W3C validator |