MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamumat1cl Structured version   Visualization version   GIF version

Theorem mamumat1cl 20570
Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
Assertion
Ref Expression
mamumat1cl (𝜑𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   1 (𝑖,𝑗)   𝐼(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem mamumat1cl
StepHypRef Expression
1 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
2 mamumat1cl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 mamumat1cl.o . . . . . . . 8 1 = (1r𝑅)
42, 3ringidcl 18884 . . . . . . 7 (𝑅 ∈ Ring → 1𝐵)
5 mamumat1cl.z . . . . . . . 8 0 = (0g𝑅)
62, 5ring0cl 18885 . . . . . . 7 (𝑅 ∈ Ring → 0𝐵)
74, 6ifcld 4322 . . . . . 6 (𝑅 ∈ Ring → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
81, 7syl 17 . . . . 5 (𝜑 → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
98adantr 473 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑗𝑀)) → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
109ralrimivva 3152 . . 3 (𝜑 → ∀𝑖𝑀𝑗𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
11 mamumat1cl.i . . . 4 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
1211fmpt2 7473 . . 3 (∀𝑖𝑀𝑗𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵𝐼:(𝑀 × 𝑀)⟶𝐵)
1310, 12sylib 210 . 2 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
142fvexi 6425 . . 3 𝐵 ∈ V
15 mamumat1cl.m . . . 4 (𝜑𝑀 ∈ Fin)
16 xpfi 8473 . . . 4 ((𝑀 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑀 × 𝑀) ∈ Fin)
1715, 15, 16syl2anc 580 . . 3 (𝜑 → (𝑀 × 𝑀) ∈ Fin)
18 elmapg 8108 . . 3 ((𝐵 ∈ V ∧ (𝑀 × 𝑀) ∈ Fin) → (𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵))
1914, 17, 18sylancr 582 . 2 (𝜑 → (𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵))
2013, 19mpbird 249 1 (𝜑𝐼 ∈ (𝐵𝑚 (𝑀 × 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  ifcif 4277   × cxp 5310  wf 6097  cfv 6101  (class class class)co 6878  cmpt2 6880  𝑚 cmap 8095  Fincfn 8195  Basecbs 16184  0gc0g 16415  1rcur 18817  Ringcrg 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-plusg 16280  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-mgp 18806  df-ur 18818  df-ring 18865
This theorem is referenced by:  mamulid  20572  mamurid  20573  matring  20574  mat1  20579
  Copyright terms: Public domain W3C validator