MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamumat1cl Structured version   Visualization version   GIF version

Theorem mamumat1cl 21940
Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
Assertion
Ref Expression
mamumat1cl (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   1 (𝑖,𝑗)   𝐼(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem mamumat1cl
StepHypRef Expression
1 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
2 mamumat1cl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
3 mamumat1cl.o . . . . . . . 8 1 = (1r𝑅)
42, 3ringidcl 20082 . . . . . . 7 (𝑅 ∈ Ring → 1𝐵)
5 mamumat1cl.z . . . . . . . 8 0 = (0g𝑅)
62, 5ring0cl 20083 . . . . . . 7 (𝑅 ∈ Ring → 0𝐵)
74, 6ifcld 4574 . . . . . 6 (𝑅 ∈ Ring → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
81, 7syl 17 . . . . 5 (𝜑 → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
98adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑗𝑀)) → if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
109ralrimivva 3200 . . 3 (𝜑 → ∀𝑖𝑀𝑗𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵)
11 mamumat1cl.i . . . 4 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
1211fmpo 8053 . . 3 (∀𝑖𝑀𝑗𝑀 if(𝑖 = 𝑗, 1 , 0 ) ∈ 𝐵𝐼:(𝑀 × 𝑀)⟶𝐵)
1310, 12sylib 217 . 2 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
142fvexi 6905 . . 3 𝐵 ∈ V
15 mamumat1cl.m . . . 4 (𝜑𝑀 ∈ Fin)
16 xpfi 9316 . . . 4 ((𝑀 ∈ Fin ∧ 𝑀 ∈ Fin) → (𝑀 × 𝑀) ∈ Fin)
1715, 15, 16syl2anc 584 . . 3 (𝜑 → (𝑀 × 𝑀) ∈ Fin)
18 elmapg 8832 . . 3 ((𝐵 ∈ V ∧ (𝑀 × 𝑀) ∈ Fin) → (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵))
1914, 17, 18sylancr 587 . 2 (𝜑 → (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) ↔ 𝐼:(𝑀 × 𝑀)⟶𝐵))
2013, 19mpbird 256 1 (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  ifcif 4528   × cxp 5674  wf 6539  cfv 6543  (class class class)co 7408  cmpo 7410  m cmap 8819  Fincfn 8938  Basecbs 17143  0gc0g 17384  1rcur 20003  Ringcrg 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-mgp 19987  df-ur 20004  df-ring 20057
This theorem is referenced by:  mamulid  21942  mamurid  21943  matring  21944  mat1  21948
  Copyright terms: Public domain W3C validator