MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamulid Structured version   Visualization version   GIF version

Theorem mamulid 22379
Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamulid.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
mamulid.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
Assertion
Ref Expression
mamulid (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamulid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamulid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2735 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Ring)
6 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑀 ∈ Fin)
8 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
98adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑁 ∈ Fin)
10 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
11 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
12 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
132, 4, 10, 11, 12, 6mamumat1cl 22377 . . . . . 6 (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
15 mamulid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
1615adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
17 simprl 770 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑙𝑀)
18 simprr 772 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑘𝑁)
191, 2, 3, 5, 7, 7, 9, 14, 16, 17, 18mamufv 22332 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))))
20 ringmnd 20203 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Mnd)
224ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑅 ∈ Ring)
23 elmapi 8863 . . . . . . . . . 10 (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
2413, 23syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
2524ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
26 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑙𝑀)
27 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑚𝑀)
2825, 26, 27fovcdmd 7579 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑙𝐼𝑚) ∈ 𝐵)
29 elmapi 8863 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3130ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
32 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑘𝑁)
3331, 27, 32fovcdmd 7579 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑚𝑋𝑘) ∈ 𝐵)
342, 3ringcl 20210 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝐼𝑚) ∈ 𝐵 ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
3635fmpttd 7105 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))):𝑀𝐵)
37263adant3 1132 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑙𝑀)
38 simp2 1137 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑚𝑀)
392, 4, 10, 11, 12, 6mat1comp 22378 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑙 = 𝑚, 1 , 0 ))
40 equcom 2017 . . . . . . . . . . . . 13 (𝑙 = 𝑚𝑚 = 𝑙)
4140a1i 11 . . . . . . . . . . . 12 ((𝑙𝑀𝑚𝑀) → (𝑙 = 𝑚𝑚 = 𝑙))
4241ifbid 4524 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → if(𝑙 = 𝑚, 1 , 0 ) = if(𝑚 = 𝑙, 1 , 0 ))
4339, 42eqtrd 2770 . . . . . . . . . 10 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
4437, 38, 43syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
45 ifnefalse 4512 . . . . . . . . . 10 (𝑚𝑙 → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
46453ad2ant3 1135 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
4744, 46eqtrd 2770 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = 0 )
4847oveq1d 7420 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ( 0 (.r𝑅)(𝑚𝑋𝑘)))
492, 3, 11ringlz 20253 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5022, 33, 49syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
51503adant3 1132 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5248, 51eqtrd 2770 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = 0 )
5352, 7suppsssn 8200 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) supp 0 ) ⊆ {𝑙})
542, 11, 21, 7, 17, 36, 53gsumpt 19943 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))) = ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙))
55 oveq2 7413 . . . . . . . 8 (𝑚 = 𝑙 → (𝑙𝐼𝑚) = (𝑙𝐼𝑙))
56 oveq1 7412 . . . . . . . 8 (𝑚 = 𝑙 → (𝑚𝑋𝑘) = (𝑙𝑋𝑘))
5755, 56oveq12d 7423 . . . . . . 7 (𝑚 = 𝑙 → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
58 eqid 2735 . . . . . . 7 (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) = (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))
59 ovex 7438 . . . . . . 7 ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) ∈ V
6057, 58, 59fvmpt 6986 . . . . . 6 (𝑙𝑀 → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
6160ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
62 equequ1 2024 . . . . . . . . . 10 (𝑖 = 𝑙 → (𝑖 = 𝑗𝑙 = 𝑗))
6362ifbid 4524 . . . . . . . . 9 (𝑖 = 𝑙 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑗, 1 , 0 ))
64 equequ2 2025 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑙 = 𝑗𝑙 = 𝑙))
6564ifbid 4524 . . . . . . . . . 10 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑙, 1 , 0 ))
66 equid 2011 . . . . . . . . . . 11 𝑙 = 𝑙
6766iftruei 4507 . . . . . . . . . 10 if(𝑙 = 𝑙, 1 , 0 ) = 1
6865, 67eqtrdi 2786 . . . . . . . . 9 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = 1 )
6910fvexi 6890 . . . . . . . . 9 1 ∈ V
7063, 68, 12, 69ovmpo 7567 . . . . . . . 8 ((𝑙𝑀𝑙𝑀) → (𝑙𝐼𝑙) = 1 )
7170anidms 566 . . . . . . 7 (𝑙𝑀 → (𝑙𝐼𝑙) = 1 )
7271ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝐼𝑙) = 1 )
7372oveq1d 7420 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) = ( 1 (.r𝑅)(𝑙𝑋𝑘)))
7430fovcdmda 7578 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝑋𝑘) ∈ 𝐵)
752, 3, 10ringlidm 20229 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
765, 74, 75syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
7761, 73, 763eqtrd 2774 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = (𝑙𝑋𝑘))
7819, 54, 773eqtrd 2774 . . 3 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
7978ralrimivva 3187 . 2 (𝜑 → ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
802, 4, 1, 6, 6, 8, 13, 15mamucl 22339 . . . . 5 (𝜑 → (𝐼𝐹𝑋) ∈ (𝐵m (𝑀 × 𝑁)))
81 elmapi 8863 . . . . 5 ((𝐼𝐹𝑋) ∈ (𝐵m (𝑀 × 𝑁)) → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
8280, 81syl 17 . . . 4 (𝜑 → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
8382ffnd 6707 . . 3 (𝜑 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁))
8430ffnd 6707 . . 3 (𝜑𝑋 Fn (𝑀 × 𝑁))
85 eqfnov2 7537 . . 3 (((𝐼𝐹𝑋) Fn (𝑀 × 𝑁) ∧ 𝑋 Fn (𝑀 × 𝑁)) → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
8683, 84, 85syl2anc 584 . 2 (𝜑 → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
8779, 86mpbird 257 1 (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  ifcif 4500  cotp 4609  cmpt 5201   × cxp 5652   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  Fincfn 8959  Basecbs 17228  .rcmulr 17272  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  1rcur 20141  Ringcrg 20193   maMul cmmul 22328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-mamu 22329
This theorem is referenced by:  matring  22381  mat1  22385
  Copyright terms: Public domain W3C validator