MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamulid Structured version   Visualization version   GIF version

Theorem mamulid 21498
Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamulid.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
mamulid.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
Assertion
Ref Expression
mamulid (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamulid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamulid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2738 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Ring)
6 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
76adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑀 ∈ Fin)
8 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
98adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑁 ∈ Fin)
10 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
11 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
12 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
132, 4, 10, 11, 12, 6mamumat1cl 21496 . . . . . 6 (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
15 mamulid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
1615adantr 480 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
17 simprl 767 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑙𝑀)
18 simprr 769 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑘𝑁)
191, 2, 3, 5, 7, 7, 9, 14, 16, 17, 18mamufv 21446 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))))
20 ringmnd 19708 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Mnd)
224ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑅 ∈ Ring)
23 elmapi 8595 . . . . . . . . . 10 (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
2413, 23syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
2524ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
26 simplrl 773 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑙𝑀)
27 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑚𝑀)
2825, 26, 27fovrnd 7422 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑙𝐼𝑚) ∈ 𝐵)
29 elmapi 8595 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3130ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
32 simplrr 774 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑘𝑁)
3331, 27, 32fovrnd 7422 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑚𝑋𝑘) ∈ 𝐵)
342, 3ringcl 19715 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝐼𝑚) ∈ 𝐵 ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1369 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
3635fmpttd 6971 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))):𝑀𝐵)
37263adant3 1130 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑙𝑀)
38 simp2 1135 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑚𝑀)
392, 4, 10, 11, 12, 6mat1comp 21497 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑙 = 𝑚, 1 , 0 ))
40 equcom 2022 . . . . . . . . . . . . 13 (𝑙 = 𝑚𝑚 = 𝑙)
4140a1i 11 . . . . . . . . . . . 12 ((𝑙𝑀𝑚𝑀) → (𝑙 = 𝑚𝑚 = 𝑙))
4241ifbid 4479 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → if(𝑙 = 𝑚, 1 , 0 ) = if(𝑚 = 𝑙, 1 , 0 ))
4339, 42eqtrd 2778 . . . . . . . . . 10 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
4437, 38, 43syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
45 ifnefalse 4468 . . . . . . . . . 10 (𝑚𝑙 → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
46453ad2ant3 1133 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
4744, 46eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = 0 )
4847oveq1d 7270 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ( 0 (.r𝑅)(𝑚𝑋𝑘)))
492, 3, 11ringlz 19741 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5022, 33, 49syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
51503adant3 1130 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5248, 51eqtrd 2778 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = 0 )
5352, 7suppsssn 7988 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) supp 0 ) ⊆ {𝑙})
542, 11, 21, 7, 17, 36, 53gsumpt 19478 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))) = ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙))
55 oveq2 7263 . . . . . . . 8 (𝑚 = 𝑙 → (𝑙𝐼𝑚) = (𝑙𝐼𝑙))
56 oveq1 7262 . . . . . . . 8 (𝑚 = 𝑙 → (𝑚𝑋𝑘) = (𝑙𝑋𝑘))
5755, 56oveq12d 7273 . . . . . . 7 (𝑚 = 𝑙 → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
58 eqid 2738 . . . . . . 7 (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) = (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))
59 ovex 7288 . . . . . . 7 ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) ∈ V
6057, 58, 59fvmpt 6857 . . . . . 6 (𝑙𝑀 → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
6160ad2antrl 724 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
62 equequ1 2029 . . . . . . . . . 10 (𝑖 = 𝑙 → (𝑖 = 𝑗𝑙 = 𝑗))
6362ifbid 4479 . . . . . . . . 9 (𝑖 = 𝑙 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑗, 1 , 0 ))
64 equequ2 2030 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑙 = 𝑗𝑙 = 𝑙))
6564ifbid 4479 . . . . . . . . . 10 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑙, 1 , 0 ))
66 equid 2016 . . . . . . . . . . 11 𝑙 = 𝑙
6766iftruei 4463 . . . . . . . . . 10 if(𝑙 = 𝑙, 1 , 0 ) = 1
6865, 67eqtrdi 2795 . . . . . . . . 9 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = 1 )
6910fvexi 6770 . . . . . . . . 9 1 ∈ V
7063, 68, 12, 69ovmpo 7411 . . . . . . . 8 ((𝑙𝑀𝑙𝑀) → (𝑙𝐼𝑙) = 1 )
7170anidms 566 . . . . . . 7 (𝑙𝑀 → (𝑙𝐼𝑙) = 1 )
7271ad2antrl 724 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝐼𝑙) = 1 )
7372oveq1d 7270 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) = ( 1 (.r𝑅)(𝑙𝑋𝑘)))
7430fovrnda 7421 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝑋𝑘) ∈ 𝐵)
752, 3, 10ringlidm 19725 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
765, 74, 75syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
7761, 73, 763eqtrd 2782 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = (𝑙𝑋𝑘))
7819, 54, 773eqtrd 2782 . . 3 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
7978ralrimivva 3114 . 2 (𝜑 → ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
802, 4, 1, 6, 6, 8, 13, 15mamucl 21458 . . . . 5 (𝜑 → (𝐼𝐹𝑋) ∈ (𝐵m (𝑀 × 𝑁)))
81 elmapi 8595 . . . . 5 ((𝐼𝐹𝑋) ∈ (𝐵m (𝑀 × 𝑁)) → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
8280, 81syl 17 . . . 4 (𝜑 → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
8382ffnd 6585 . . 3 (𝜑 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁))
8430ffnd 6585 . . 3 (𝜑𝑋 Fn (𝑀 × 𝑁))
85 eqfnov2 7382 . . 3 (((𝐼𝐹𝑋) Fn (𝑀 × 𝑁) ∧ 𝑋 Fn (𝑀 × 𝑁)) → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
8683, 84, 85syl2anc 583 . 2 (𝜑 → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
8779, 86mpbird 256 1 (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  ifcif 4456  cotp 4566  cmpt 5153   × cxp 5578   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Fincfn 8691  Basecbs 16840  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  1rcur 19652  Ringcrg 19698   maMul cmmul 21442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-mamu 21443
This theorem is referenced by:  matring  21500  mat1  21504
  Copyright terms: Public domain W3C validator