MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamulid Structured version   Visualization version   GIF version

Theorem mamulid 21786
Description: The identity matrix (as operation in maps-to notation) is a left identity (for any matrix with the same number of rows). (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamumat1cl.b 𝐵 = (Base‘𝑅)
mamumat1cl.r (𝜑𝑅 ∈ Ring)
mamumat1cl.o 1 = (1r𝑅)
mamumat1cl.z 0 = (0g𝑅)
mamumat1cl.i 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
mamumat1cl.m (𝜑𝑀 ∈ Fin)
mamulid.n (𝜑𝑁 ∈ Fin)
mamulid.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
mamulid.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
Assertion
Ref Expression
mamulid (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Distinct variable groups:   𝑖,𝑗,𝐵   𝑖,𝑀,𝑗   𝜑,𝑖,𝑗   0 ,𝑖,𝑗   1 ,𝑖,𝑗
Allowed substitution hints:   𝑅(𝑖,𝑗)   𝐹(𝑖,𝑗)   𝐼(𝑖,𝑗)   𝑁(𝑖,𝑗)   𝑋(𝑖,𝑗)

Proof of Theorem mamulid
Dummy variables 𝑘 𝑙 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamulid.f . . . . 5 𝐹 = (𝑅 maMul ⟨𝑀, 𝑀, 𝑁⟩)
2 mamumat1cl.b . . . . 5 𝐵 = (Base‘𝑅)
3 eqid 2736 . . . . 5 (.r𝑅) = (.r𝑅)
4 mamumat1cl.r . . . . . 6 (𝜑𝑅 ∈ Ring)
54adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Ring)
6 mamumat1cl.m . . . . . 6 (𝜑𝑀 ∈ Fin)
76adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑀 ∈ Fin)
8 mamulid.n . . . . . 6 (𝜑𝑁 ∈ Fin)
98adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑁 ∈ Fin)
10 mamumat1cl.o . . . . . . 7 1 = (1r𝑅)
11 mamumat1cl.z . . . . . . 7 0 = (0g𝑅)
12 mamumat1cl.i . . . . . . 7 𝐼 = (𝑖𝑀, 𝑗𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 ))
132, 4, 10, 11, 12, 6mamumat1cl 21784 . . . . . 6 (𝜑𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
1413adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝐼 ∈ (𝐵m (𝑀 × 𝑀)))
15 mamulid.x . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
1615adantr 481 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
17 simprl 769 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑙𝑀)
18 simprr 771 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑘𝑁)
191, 2, 3, 5, 7, 7, 9, 14, 16, 17, 18mamufv 21732 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))))
20 ringmnd 19970 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
215, 20syl 17 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → 𝑅 ∈ Mnd)
224ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑅 ∈ Ring)
23 elmapi 8784 . . . . . . . . . 10 (𝐼 ∈ (𝐵m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
2413, 23syl 17 . . . . . . . . 9 (𝜑𝐼:(𝑀 × 𝑀)⟶𝐵)
2524ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵)
26 simplrl 775 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑙𝑀)
27 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑚𝑀)
2825, 26, 27fovcdmd 7523 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑙𝐼𝑚) ∈ 𝐵)
29 elmapi 8784 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
3015, 29syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
3130ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
32 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → 𝑘𝑁)
3331, 27, 32fovcdmd 7523 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → (𝑚𝑋𝑘) ∈ 𝐵)
342, 3ringcl 19977 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑙𝐼𝑚) ∈ 𝐵 ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
3522, 28, 33, 34syl3anc 1371 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) ∈ 𝐵)
3635fmpttd 7060 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))):𝑀𝐵)
37263adant3 1132 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑙𝑀)
38 simp2 1137 . . . . . . . . . 10 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → 𝑚𝑀)
392, 4, 10, 11, 12, 6mat1comp 21785 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑙 = 𝑚, 1 , 0 ))
40 equcom 2021 . . . . . . . . . . . . 13 (𝑙 = 𝑚𝑚 = 𝑙)
4140a1i 11 . . . . . . . . . . . 12 ((𝑙𝑀𝑚𝑀) → (𝑙 = 𝑚𝑚 = 𝑙))
4241ifbid 4508 . . . . . . . . . . 11 ((𝑙𝑀𝑚𝑀) → if(𝑙 = 𝑚, 1 , 0 ) = if(𝑚 = 𝑙, 1 , 0 ))
4339, 42eqtrd 2776 . . . . . . . . . 10 ((𝑙𝑀𝑚𝑀) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
4437, 38, 43syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 ))
45 ifnefalse 4497 . . . . . . . . . 10 (𝑚𝑙 → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
46453ad2ant3 1135 . . . . . . . . 9 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → if(𝑚 = 𝑙, 1 , 0 ) = 0 )
4744, 46eqtrd 2776 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → (𝑙𝐼𝑚) = 0 )
4847oveq1d 7369 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ( 0 (.r𝑅)(𝑚𝑋𝑘)))
492, 3, 11ringlz 20007 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5022, 33, 49syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
51503adant3 1132 . . . . . . 7 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ( 0 (.r𝑅)(𝑚𝑋𝑘)) = 0 )
5248, 51eqtrd 2776 . . . . . 6 (((𝜑 ∧ (𝑙𝑀𝑘𝑁)) ∧ 𝑚𝑀𝑚𝑙) → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = 0 )
5352, 7suppsssn 8129 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) supp 0 ) ⊆ {𝑙})
542, 11, 21, 7, 17, 36, 53gsumpt 19735 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑅 Σg (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))) = ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙))
55 oveq2 7362 . . . . . . . 8 (𝑚 = 𝑙 → (𝑙𝐼𝑚) = (𝑙𝐼𝑙))
56 oveq1 7361 . . . . . . . 8 (𝑚 = 𝑙 → (𝑚𝑋𝑘) = (𝑙𝑋𝑘))
5755, 56oveq12d 7372 . . . . . . 7 (𝑚 = 𝑙 → ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
58 eqid 2736 . . . . . . 7 (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘))) = (𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))
59 ovex 7387 . . . . . . 7 ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) ∈ V
6057, 58, 59fvmpt 6946 . . . . . 6 (𝑙𝑀 → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
6160ad2antrl 726 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)))
62 equequ1 2028 . . . . . . . . . 10 (𝑖 = 𝑙 → (𝑖 = 𝑗𝑙 = 𝑗))
6362ifbid 4508 . . . . . . . . 9 (𝑖 = 𝑙 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑗, 1 , 0 ))
64 equequ2 2029 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑙 = 𝑗𝑙 = 𝑙))
6564ifbid 4508 . . . . . . . . . 10 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑙, 1 , 0 ))
66 equid 2015 . . . . . . . . . . 11 𝑙 = 𝑙
6766iftruei 4492 . . . . . . . . . 10 if(𝑙 = 𝑙, 1 , 0 ) = 1
6865, 67eqtrdi 2792 . . . . . . . . 9 (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = 1 )
6910fvexi 6854 . . . . . . . . 9 1 ∈ V
7063, 68, 12, 69ovmpo 7512 . . . . . . . 8 ((𝑙𝑀𝑙𝑀) → (𝑙𝐼𝑙) = 1 )
7170anidms 567 . . . . . . 7 (𝑙𝑀 → (𝑙𝐼𝑙) = 1 )
7271ad2antrl 726 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝐼𝑙) = 1 )
7372oveq1d 7369 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑙𝐼𝑙)(.r𝑅)(𝑙𝑋𝑘)) = ( 1 (.r𝑅)(𝑙𝑋𝑘)))
7430fovcdmda 7522 . . . . . 6 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙𝑋𝑘) ∈ 𝐵)
752, 3, 10ringlidm 19988 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
765, 74, 75syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ( 1 (.r𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘))
7761, 73, 763eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → ((𝑚𝑀 ↦ ((𝑙𝐼𝑚)(.r𝑅)(𝑚𝑋𝑘)))‘𝑙) = (𝑙𝑋𝑘))
7819, 54, 773eqtrd 2780 . . 3 ((𝜑 ∧ (𝑙𝑀𝑘𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
7978ralrimivva 3196 . 2 (𝜑 → ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))
802, 4, 1, 6, 6, 8, 13, 15mamucl 21744 . . . . 5 (𝜑 → (𝐼𝐹𝑋) ∈ (𝐵m (𝑀 × 𝑁)))
81 elmapi 8784 . . . . 5 ((𝐼𝐹𝑋) ∈ (𝐵m (𝑀 × 𝑁)) → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
8280, 81syl 17 . . . 4 (𝜑 → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵)
8382ffnd 6667 . . 3 (𝜑 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁))
8430ffnd 6667 . . 3 (𝜑𝑋 Fn (𝑀 × 𝑁))
85 eqfnov2 7483 . . 3 (((𝐼𝐹𝑋) Fn (𝑀 × 𝑁) ∧ 𝑋 Fn (𝑀 × 𝑁)) → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
8683, 84, 85syl2anc 584 . 2 (𝜑 → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙𝑀𝑘𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)))
8779, 86mpbird 256 1 (𝜑 → (𝐼𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2942  wral 3063  ifcif 4485  cotp 4593  cmpt 5187   × cxp 5630   Fn wfn 6489  wf 6490  cfv 6494  (class class class)co 7354  cmpo 7356  m cmap 8762  Fincfn 8880  Basecbs 17080  .rcmulr 17131  0gc0g 17318   Σg cgsu 17319  Mndcmnd 18553  1rcur 19909  Ringcrg 19960   maMul cmmul 21728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-isom 6503  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-1st 7918  df-2nd 7919  df-supp 8090  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-1o 8409  df-er 8645  df-map 8764  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-fsupp 9303  df-oi 9443  df-card 9872  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-2 12213  df-n0 12411  df-z 12497  df-uz 12761  df-fz 13422  df-fzo 13565  df-seq 13904  df-hash 14228  df-sets 17033  df-slot 17051  df-ndx 17063  df-base 17081  df-ress 17110  df-plusg 17143  df-0g 17320  df-gsum 17321  df-mre 17463  df-mrc 17464  df-acs 17466  df-mgm 18494  df-sgrp 18543  df-mnd 18554  df-submnd 18599  df-grp 18748  df-minusg 18749  df-mulg 18869  df-cntz 19093  df-cmn 19560  df-abl 19561  df-mgp 19893  df-ur 19910  df-ring 19962  df-mamu 21729
This theorem is referenced by:  matring  21788  mat1  21792
  Copyright terms: Public domain W3C validator