| Step | Hyp | Ref
| Expression |
| 1 | | mamulid.f |
. . . . 5
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑀, 𝑁〉) |
| 2 | | mamumat1cl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
| 3 | | eqid 2737 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | mamumat1cl.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 6 | | mamumat1cl.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Fin) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑀 ∈ Fin) |
| 8 | | mamulid.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 10 | | mamumat1cl.o |
. . . . . . 7
⊢ 1 =
(1r‘𝑅) |
| 11 | | mamumat1cl.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
| 12 | | mamumat1cl.i |
. . . . . . 7
⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
| 13 | 2, 4, 10, 11, 12, 6 | mamumat1cl 22445 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
| 14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
| 15 | | mamulid.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| 16 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| 17 | | simprl 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑙 ∈ 𝑀) |
| 18 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑘 ∈ 𝑁) |
| 19 | 1, 2, 3, 5, 7, 7, 9, 14, 16, 17, 18 | mamufv 22398 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑅 Σg (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))))) |
| 20 | | ringmnd 20240 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 21 | 5, 20 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑅 ∈ Mnd) |
| 22 | 4 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑅 ∈ Ring) |
| 23 | | elmapi 8889 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
| 24 | 13, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
| 26 | | simplrl 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑙 ∈ 𝑀) |
| 27 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑚 ∈ 𝑀) |
| 28 | 25, 26, 27 | fovcdmd 7605 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → (𝑙𝐼𝑚) ∈ 𝐵) |
| 29 | | elmapi 8889 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 30 | 15, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 32 | | simplrr 778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑘 ∈ 𝑁) |
| 33 | 31, 27, 32 | fovcdmd 7605 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → (𝑚𝑋𝑘) ∈ 𝐵) |
| 34 | 2, 3 | ringcl 20247 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑙𝐼𝑚) ∈ 𝐵 ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) ∈ 𝐵) |
| 35 | 22, 28, 33, 34 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) ∈ 𝐵) |
| 36 | 35 | fmpttd 7135 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))):𝑀⟶𝐵) |
| 37 | 26 | 3adant3 1133 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → 𝑙 ∈ 𝑀) |
| 38 | | simp2 1138 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → 𝑚 ∈ 𝑀) |
| 39 | 2, 4, 10, 11, 12, 6 | mat1comp 22446 |
. . . . . . . . . . 11
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → (𝑙𝐼𝑚) = if(𝑙 = 𝑚, 1 , 0 )) |
| 40 | | equcom 2017 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑚 ↔ 𝑚 = 𝑙) |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → (𝑙 = 𝑚 ↔ 𝑚 = 𝑙)) |
| 42 | 41 | ifbid 4549 |
. . . . . . . . . . 11
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → if(𝑙 = 𝑚, 1 , 0 ) = if(𝑚 = 𝑙, 1 , 0 )) |
| 43 | 39, 42 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 )) |
| 44 | 37, 38, 43 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 )) |
| 45 | | ifnefalse 4537 |
. . . . . . . . . 10
⊢ (𝑚 ≠ 𝑙 → if(𝑚 = 𝑙, 1 , 0 ) = 0 ) |
| 46 | 45 | 3ad2ant3 1136 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → if(𝑚 = 𝑙, 1 , 0 ) = 0 ) |
| 47 | 44, 46 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → (𝑙𝐼𝑚) = 0 ) |
| 48 | 47 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) = ( 0 (.r‘𝑅)(𝑚𝑋𝑘))) |
| 49 | 2, 3, 11 | ringlz 20290 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ( 0 (.r‘𝑅)(𝑚𝑋𝑘)) = 0 ) |
| 50 | 22, 33, 49 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → ( 0 (.r‘𝑅)(𝑚𝑋𝑘)) = 0 ) |
| 51 | 50 | 3adant3 1133 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → ( 0 (.r‘𝑅)(𝑚𝑋𝑘)) = 0 ) |
| 52 | 48, 51 | eqtrd 2777 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) = 0 ) |
| 53 | 52, 7 | suppsssn 8226 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))) supp 0 ) ⊆ {𝑙}) |
| 54 | 2, 11, 21, 7, 17, 36, 53 | gsumpt 19980 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑅 Σg (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))) = ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))‘𝑙)) |
| 55 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑚 = 𝑙 → (𝑙𝐼𝑚) = (𝑙𝐼𝑙)) |
| 56 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑚 = 𝑙 → (𝑚𝑋𝑘) = (𝑙𝑋𝑘)) |
| 57 | 55, 56 | oveq12d 7449 |
. . . . . . 7
⊢ (𝑚 = 𝑙 → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) = ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘))) |
| 58 | | eqid 2737 |
. . . . . . 7
⊢ (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))) = (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))) |
| 59 | | ovex 7464 |
. . . . . . 7
⊢ ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘)) ∈ V |
| 60 | 57, 58, 59 | fvmpt 7016 |
. . . . . 6
⊢ (𝑙 ∈ 𝑀 → ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘))) |
| 61 | 60 | ad2antrl 728 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘))) |
| 62 | | equequ1 2024 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑙 → (𝑖 = 𝑗 ↔ 𝑙 = 𝑗)) |
| 63 | 62 | ifbid 4549 |
. . . . . . . . 9
⊢ (𝑖 = 𝑙 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑗, 1 , 0 )) |
| 64 | | equequ2 2025 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → (𝑙 = 𝑗 ↔ 𝑙 = 𝑙)) |
| 65 | 64 | ifbid 4549 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑙, 1 , 0 )) |
| 66 | | equid 2011 |
. . . . . . . . . . 11
⊢ 𝑙 = 𝑙 |
| 67 | 66 | iftruei 4532 |
. . . . . . . . . 10
⊢ if(𝑙 = 𝑙, 1 , 0 ) = 1 |
| 68 | 65, 67 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = 1 ) |
| 69 | 10 | fvexi 6920 |
. . . . . . . . 9
⊢ 1 ∈
V |
| 70 | 63, 68, 12, 69 | ovmpo 7593 |
. . . . . . . 8
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑙 ∈ 𝑀) → (𝑙𝐼𝑙) = 1 ) |
| 71 | 70 | anidms 566 |
. . . . . . 7
⊢ (𝑙 ∈ 𝑀 → (𝑙𝐼𝑙) = 1 ) |
| 72 | 71 | ad2antrl 728 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑙𝐼𝑙) = 1 ) |
| 73 | 72 | oveq1d 7446 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘)) = ( 1 (.r‘𝑅)(𝑙𝑋𝑘))) |
| 74 | 30 | fovcdmda 7604 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑙𝑋𝑘) ∈ 𝐵) |
| 75 | 2, 3, 10 | ringlidm 20266 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ( 1 (.r‘𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘)) |
| 76 | 5, 74, 75 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ( 1 (.r‘𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘)) |
| 77 | 61, 73, 76 | 3eqtrd 2781 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))‘𝑙) = (𝑙𝑋𝑘)) |
| 78 | 19, 54, 77 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)) |
| 79 | 78 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑙 ∈ 𝑀 ∀𝑘 ∈ 𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)) |
| 80 | 2, 4, 1, 6, 6, 8, 13, 15 | mamucl 22405 |
. . . . 5
⊢ (𝜑 → (𝐼𝐹𝑋) ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| 81 | | elmapi 8889 |
. . . . 5
⊢ ((𝐼𝐹𝑋) ∈ (𝐵 ↑m (𝑀 × 𝑁)) → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵) |
| 82 | 80, 81 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵) |
| 83 | 82 | ffnd 6737 |
. . 3
⊢ (𝜑 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁)) |
| 84 | 30 | ffnd 6737 |
. . 3
⊢ (𝜑 → 𝑋 Fn (𝑀 × 𝑁)) |
| 85 | | eqfnov2 7563 |
. . 3
⊢ (((𝐼𝐹𝑋) Fn (𝑀 × 𝑁) ∧ 𝑋 Fn (𝑀 × 𝑁)) → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙 ∈ 𝑀 ∀𝑘 ∈ 𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))) |
| 86 | 83, 84, 85 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙 ∈ 𝑀 ∀𝑘 ∈ 𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))) |
| 87 | 79, 86 | mpbird 257 |
1
⊢ (𝜑 → (𝐼𝐹𝑋) = 𝑋) |