Step | Hyp | Ref
| Expression |
1 | | mamulid.f |
. . . . 5
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑀, 𝑁〉) |
2 | | mamumat1cl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
3 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
4 | | mamumat1cl.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Ring) |
5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑅 ∈ Ring) |
6 | | mamumat1cl.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ Fin) |
7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑀 ∈ Fin) |
8 | | mamulid.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ Fin) |
9 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑁 ∈ Fin) |
10 | | mamumat1cl.o |
. . . . . . 7
⊢ 1 =
(1r‘𝑅) |
11 | | mamumat1cl.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑅) |
12 | | mamumat1cl.i |
. . . . . . 7
⊢ 𝐼 = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑀 ↦ if(𝑖 = 𝑗, 1 , 0 )) |
13 | 2, 4, 10, 11, 12, 6 | mamumat1cl 21496 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀))) |
15 | | mamulid.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
16 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
17 | | simprl 767 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑙 ∈ 𝑀) |
18 | | simprr 769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑘 ∈ 𝑁) |
19 | 1, 2, 3, 5, 7, 7, 9, 14, 16, 17, 18 | mamufv 21446 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑅 Σg (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))))) |
20 | | ringmnd 19708 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
21 | 5, 20 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → 𝑅 ∈ Mnd) |
22 | 4 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑅 ∈ Ring) |
23 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝐼 ∈ (𝐵 ↑m (𝑀 × 𝑀)) → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
24 | 13, 23 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
25 | 24 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝐼:(𝑀 × 𝑀)⟶𝐵) |
26 | | simplrl 773 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑙 ∈ 𝑀) |
27 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑚 ∈ 𝑀) |
28 | 25, 26, 27 | fovrnd 7422 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → (𝑙𝐼𝑚) ∈ 𝐵) |
29 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
30 | 15, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
31 | 30 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
32 | | simplrr 774 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → 𝑘 ∈ 𝑁) |
33 | 31, 27, 32 | fovrnd 7422 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → (𝑚𝑋𝑘) ∈ 𝐵) |
34 | 2, 3 | ringcl 19715 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑙𝐼𝑚) ∈ 𝐵 ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) ∈ 𝐵) |
35 | 22, 28, 33, 34 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) ∈ 𝐵) |
36 | 35 | fmpttd 6971 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))):𝑀⟶𝐵) |
37 | 26 | 3adant3 1130 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → 𝑙 ∈ 𝑀) |
38 | | simp2 1135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → 𝑚 ∈ 𝑀) |
39 | 2, 4, 10, 11, 12, 6 | mat1comp 21497 |
. . . . . . . . . . 11
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → (𝑙𝐼𝑚) = if(𝑙 = 𝑚, 1 , 0 )) |
40 | | equcom 2022 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑚 ↔ 𝑚 = 𝑙) |
41 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → (𝑙 = 𝑚 ↔ 𝑚 = 𝑙)) |
42 | 41 | ifbid 4479 |
. . . . . . . . . . 11
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → if(𝑙 = 𝑚, 1 , 0 ) = if(𝑚 = 𝑙, 1 , 0 )) |
43 | 39, 42 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑚 ∈ 𝑀) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 )) |
44 | 37, 38, 43 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → (𝑙𝐼𝑚) = if(𝑚 = 𝑙, 1 , 0 )) |
45 | | ifnefalse 4468 |
. . . . . . . . . 10
⊢ (𝑚 ≠ 𝑙 → if(𝑚 = 𝑙, 1 , 0 ) = 0 ) |
46 | 45 | 3ad2ant3 1133 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → if(𝑚 = 𝑙, 1 , 0 ) = 0 ) |
47 | 44, 46 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → (𝑙𝐼𝑚) = 0 ) |
48 | 47 | oveq1d 7270 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) = ( 0 (.r‘𝑅)(𝑚𝑋𝑘))) |
49 | 2, 3, 11 | ringlz 19741 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑚𝑋𝑘) ∈ 𝐵) → ( 0 (.r‘𝑅)(𝑚𝑋𝑘)) = 0 ) |
50 | 22, 33, 49 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀) → ( 0 (.r‘𝑅)(𝑚𝑋𝑘)) = 0 ) |
51 | 50 | 3adant3 1130 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → ( 0 (.r‘𝑅)(𝑚𝑋𝑘)) = 0 ) |
52 | 48, 51 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) ∧ 𝑚 ∈ 𝑀 ∧ 𝑚 ≠ 𝑙) → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) = 0 ) |
53 | 52, 7 | suppsssn 7988 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))) supp 0 ) ⊆ {𝑙}) |
54 | 2, 11, 21, 7, 17, 36, 53 | gsumpt 19478 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑅 Σg (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))) = ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))‘𝑙)) |
55 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑚 = 𝑙 → (𝑙𝐼𝑚) = (𝑙𝐼𝑙)) |
56 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑚 = 𝑙 → (𝑚𝑋𝑘) = (𝑙𝑋𝑘)) |
57 | 55, 56 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑚 = 𝑙 → ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)) = ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘))) |
58 | | eqid 2738 |
. . . . . . 7
⊢ (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))) = (𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘))) |
59 | | ovex 7288 |
. . . . . . 7
⊢ ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘)) ∈ V |
60 | 57, 58, 59 | fvmpt 6857 |
. . . . . 6
⊢ (𝑙 ∈ 𝑀 → ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘))) |
61 | 60 | ad2antrl 724 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))‘𝑙) = ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘))) |
62 | | equequ1 2029 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑙 → (𝑖 = 𝑗 ↔ 𝑙 = 𝑗)) |
63 | 62 | ifbid 4479 |
. . . . . . . . 9
⊢ (𝑖 = 𝑙 → if(𝑖 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑗, 1 , 0 )) |
64 | | equequ2 2030 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑙 → (𝑙 = 𝑗 ↔ 𝑙 = 𝑙)) |
65 | 64 | ifbid 4479 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = if(𝑙 = 𝑙, 1 , 0 )) |
66 | | equid 2016 |
. . . . . . . . . . 11
⊢ 𝑙 = 𝑙 |
67 | 66 | iftruei 4463 |
. . . . . . . . . 10
⊢ if(𝑙 = 𝑙, 1 , 0 ) = 1 |
68 | 65, 67 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑗 = 𝑙 → if(𝑙 = 𝑗, 1 , 0 ) = 1 ) |
69 | 10 | fvexi 6770 |
. . . . . . . . 9
⊢ 1 ∈
V |
70 | 63, 68, 12, 69 | ovmpo 7411 |
. . . . . . . 8
⊢ ((𝑙 ∈ 𝑀 ∧ 𝑙 ∈ 𝑀) → (𝑙𝐼𝑙) = 1 ) |
71 | 70 | anidms 566 |
. . . . . . 7
⊢ (𝑙 ∈ 𝑀 → (𝑙𝐼𝑙) = 1 ) |
72 | 71 | ad2antrl 724 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑙𝐼𝑙) = 1 ) |
73 | 72 | oveq1d 7270 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ((𝑙𝐼𝑙)(.r‘𝑅)(𝑙𝑋𝑘)) = ( 1 (.r‘𝑅)(𝑙𝑋𝑘))) |
74 | 30 | fovrnda 7421 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑙𝑋𝑘) ∈ 𝐵) |
75 | 2, 3, 10 | ringlidm 19725 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑙𝑋𝑘) ∈ 𝐵) → ( 1 (.r‘𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘)) |
76 | 5, 74, 75 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ( 1 (.r‘𝑅)(𝑙𝑋𝑘)) = (𝑙𝑋𝑘)) |
77 | 61, 73, 76 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → ((𝑚 ∈ 𝑀 ↦ ((𝑙𝐼𝑚)(.r‘𝑅)(𝑚𝑋𝑘)))‘𝑙) = (𝑙𝑋𝑘)) |
78 | 19, 54, 77 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ (𝑙 ∈ 𝑀 ∧ 𝑘 ∈ 𝑁)) → (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)) |
79 | 78 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑙 ∈ 𝑀 ∀𝑘 ∈ 𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘)) |
80 | 2, 4, 1, 6, 6, 8, 13, 15 | mamucl 21458 |
. . . . 5
⊢ (𝜑 → (𝐼𝐹𝑋) ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
81 | | elmapi 8595 |
. . . . 5
⊢ ((𝐼𝐹𝑋) ∈ (𝐵 ↑m (𝑀 × 𝑁)) → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵) |
82 | 80, 81 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐼𝐹𝑋):(𝑀 × 𝑁)⟶𝐵) |
83 | 82 | ffnd 6585 |
. . 3
⊢ (𝜑 → (𝐼𝐹𝑋) Fn (𝑀 × 𝑁)) |
84 | 30 | ffnd 6585 |
. . 3
⊢ (𝜑 → 𝑋 Fn (𝑀 × 𝑁)) |
85 | | eqfnov2 7382 |
. . 3
⊢ (((𝐼𝐹𝑋) Fn (𝑀 × 𝑁) ∧ 𝑋 Fn (𝑀 × 𝑁)) → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙 ∈ 𝑀 ∀𝑘 ∈ 𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))) |
86 | 83, 84, 85 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝐼𝐹𝑋) = 𝑋 ↔ ∀𝑙 ∈ 𝑀 ∀𝑘 ∈ 𝑁 (𝑙(𝐼𝐹𝑋)𝑘) = (𝑙𝑋𝑘))) |
87 | 79, 86 | mpbird 256 |
1
⊢ (𝜑 → (𝐼𝐹𝑋) = 𝑋) |