| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1rhmval | Structured version Visualization version GIF version | ||
| Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| Ref | Expression |
|---|---|
| mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
| mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
| mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat1rhmval.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
| mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
| Ref | Expression |
|---|---|
| mat1rhmval | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) | |
| 2 | opeq2 4821 | . . 3 ⊢ (𝑥 = 𝑋 → 〈𝑂, 𝑥〉 = 〈𝑂, 𝑋〉) | |
| 3 | 2 | sneqd 4583 | . 2 ⊢ (𝑥 = 𝑋 → {〈𝑂, 𝑥〉} = {〈𝑂, 𝑋〉}) |
| 4 | simp3 1138 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
| 5 | snex 5369 | . . 3 ⊢ {〈𝑂, 𝑋〉} ∈ V | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → {〈𝑂, 𝑋〉} ∈ V) |
| 7 | 1, 3, 4, 6 | fvmptd3 6947 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 〈cop 4577 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Ringcrg 20146 Mat cmat 22317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 |
| This theorem is referenced by: mat1rhmelval 22390 mat1rhmcl 22391 mat1mhm 22394 |
| Copyright terms: Public domain | W3C validator |