MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1rhmval Structured version   Visualization version   GIF version

Theorem mat1rhmval 21376
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1rhmval ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐹𝑋) = {⟨𝑂, 𝑋⟩})
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mat1rhmval
StepHypRef Expression
1 mat1rhmval.f . 2 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
2 opeq2 4785 . . 3 (𝑥 = 𝑋 → ⟨𝑂, 𝑥⟩ = ⟨𝑂, 𝑋⟩)
32sneqd 4553 . 2 (𝑥 = 𝑋 → {⟨𝑂, 𝑥⟩} = {⟨𝑂, 𝑋⟩})
4 simp3 1140 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → 𝑋𝐾)
5 snex 5324 . . 3 {⟨𝑂, 𝑋⟩} ∈ V
65a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → {⟨𝑂, 𝑋⟩} ∈ V)
71, 3, 4, 6fvmptd3 6841 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐹𝑋) = {⟨𝑂, 𝑋⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3408  {csn 4541  cop 4547  cmpt 5135  cfv 6380  (class class class)co 7213  Basecbs 16760  Ringcrg 19562   Mat cmat 21304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388
This theorem is referenced by:  mat1rhmelval  21377  mat1rhmcl  21378  mat1mhm  21381
  Copyright terms: Public domain W3C validator