| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1rhmval | Structured version Visualization version GIF version | ||
| Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| Ref | Expression |
|---|---|
| mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
| mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
| mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat1rhmval.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
| mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
| Ref | Expression |
|---|---|
| mat1rhmval | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) | |
| 2 | opeq2 4855 | . . 3 ⊢ (𝑥 = 𝑋 → 〈𝑂, 𝑥〉 = 〈𝑂, 𝑋〉) | |
| 3 | 2 | sneqd 4618 | . 2 ⊢ (𝑥 = 𝑋 → {〈𝑂, 𝑥〉} = {〈𝑂, 𝑋〉}) |
| 4 | simp3 1138 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
| 5 | snex 5411 | . . 3 ⊢ {〈𝑂, 𝑋〉} ∈ V | |
| 6 | 5 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → {〈𝑂, 𝑋〉} ∈ V) |
| 7 | 1, 3, 4, 6 | fvmptd3 7014 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 〈cop 4612 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Ringcrg 20198 Mat cmat 22350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 |
| This theorem is referenced by: mat1rhmelval 22423 mat1rhmcl 22424 mat1mhm 22427 |
| Copyright terms: Public domain | W3C validator |