MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1rhmval Structured version   Visualization version   GIF version

Theorem mat1rhmval 22422
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1rhmval ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐹𝑋) = {⟨𝑂, 𝑋⟩})
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mat1rhmval
StepHypRef Expression
1 mat1rhmval.f . 2 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
2 opeq2 4855 . . 3 (𝑥 = 𝑋 → ⟨𝑂, 𝑥⟩ = ⟨𝑂, 𝑋⟩)
32sneqd 4618 . 2 (𝑥 = 𝑋 → {⟨𝑂, 𝑥⟩} = {⟨𝑂, 𝑋⟩})
4 simp3 1138 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → 𝑋𝐾)
5 snex 5411 . . 3 {⟨𝑂, 𝑋⟩} ∈ V
65a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → {⟨𝑂, 𝑋⟩} ∈ V)
71, 3, 4, 6fvmptd3 7014 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐹𝑋) = {⟨𝑂, 𝑋⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606  cop 4612  cmpt 5206  cfv 6536  (class class class)co 7410  Basecbs 17233  Ringcrg 20198   Mat cmat 22350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544
This theorem is referenced by:  mat1rhmelval  22423  mat1rhmcl  22424  mat1mhm  22427
  Copyright terms: Public domain W3C validator