| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1rhmelval | Structured version Visualization version GIF version | ||
| Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| Ref | Expression |
|---|---|
| mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
| mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
| mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat1rhmval.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
| mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
| Ref | Expression |
|---|---|
| mat1rhmelval | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐸(𝐹‘𝑋)𝐸) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝐸(𝐹‘𝑋)𝐸) = ((𝐹‘𝑋)‘〈𝐸, 𝐸〉) | |
| 2 | mat1rhmval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | mat1rhmval.a | . . . . 5 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
| 4 | mat1rhmval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 5 | mat1rhmval.o | . . . . 5 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
| 6 | mat1rhmval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) | |
| 7 | 2, 3, 4, 5, 6 | mat1rhmval 22366 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) |
| 8 | 7 | fveq1d 6860 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → ((𝐹‘𝑋)‘〈𝐸, 𝐸〉) = ({〈𝑂, 𝑋〉}‘〈𝐸, 𝐸〉)) |
| 9 | 5 | eqcomi 2738 | . . . . 5 ⊢ 〈𝐸, 𝐸〉 = 𝑂 |
| 10 | 9 | fveq2i 6861 | . . . 4 ⊢ ({〈𝑂, 𝑋〉}‘〈𝐸, 𝐸〉) = ({〈𝑂, 𝑋〉}‘𝑂) |
| 11 | opex 5424 | . . . . . 6 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
| 12 | 5, 11 | eqeltri 2824 | . . . . 5 ⊢ 𝑂 ∈ V |
| 13 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
| 14 | fvsng 7154 | . . . . 5 ⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐾) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) |
| 16 | 10, 15 | eqtrid 2776 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → ({〈𝑂, 𝑋〉}‘〈𝐸, 𝐸〉) = 𝑋) |
| 17 | 8, 16 | eqtrd 2764 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → ((𝐹‘𝑋)‘〈𝐸, 𝐸〉) = 𝑋) |
| 18 | 1, 17 | eqtrid 2776 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐸(𝐹‘𝑋)𝐸) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Ringcrg 20142 Mat cmat 22294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: mat1ghm 22370 mat1mhm 22371 |
| Copyright terms: Public domain | W3C validator |