MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1rhmelval Structured version   Visualization version   GIF version

Theorem mat1rhmelval 22415
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1rhmelval ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐸(𝐹𝑋)𝐸) = 𝑋)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mat1rhmelval
StepHypRef Expression
1 df-ov 7358 . 2 (𝐸(𝐹𝑋)𝐸) = ((𝐹𝑋)‘⟨𝐸, 𝐸⟩)
2 mat1rhmval.k . . . . 5 𝐾 = (Base‘𝑅)
3 mat1rhmval.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
4 mat1rhmval.b . . . . 5 𝐵 = (Base‘𝐴)
5 mat1rhmval.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
6 mat1rhmval.f . . . . 5 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
72, 3, 4, 5, 6mat1rhmval 22414 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐹𝑋) = {⟨𝑂, 𝑋⟩})
87fveq1d 6833 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ((𝐹𝑋)‘⟨𝐸, 𝐸⟩) = ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩))
95eqcomi 2742 . . . . 5 𝐸, 𝐸⟩ = 𝑂
109fveq2i 6834 . . . 4 ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = ({⟨𝑂, 𝑋⟩}‘𝑂)
11 opex 5409 . . . . . 6 𝐸, 𝐸⟩ ∈ V
125, 11eqeltri 2829 . . . . 5 𝑂 ∈ V
13 simp3 1138 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → 𝑋𝐾)
14 fvsng 7123 . . . . 5 ((𝑂 ∈ V ∧ 𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
1512, 13, 14sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
1610, 15eqtrid 2780 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
178, 16eqtrd 2768 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ((𝐹𝑋)‘⟨𝐸, 𝐸⟩) = 𝑋)
181, 17eqtrid 2780 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐸(𝐹𝑋)𝐸) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cop 4583  cmpt 5176  cfv 6489  (class class class)co 7355  Basecbs 17127  Ringcrg 20159   Mat cmat 22342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358
This theorem is referenced by:  mat1ghm  22418  mat1mhm  22419
  Copyright terms: Public domain W3C validator