MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1rhmelval Structured version   Visualization version   GIF version

Theorem mat1rhmelval 22502
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1rhmelval ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐸(𝐹𝑋)𝐸) = 𝑋)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mat1rhmelval
StepHypRef Expression
1 df-ov 7434 . 2 (𝐸(𝐹𝑋)𝐸) = ((𝐹𝑋)‘⟨𝐸, 𝐸⟩)
2 mat1rhmval.k . . . . 5 𝐾 = (Base‘𝑅)
3 mat1rhmval.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
4 mat1rhmval.b . . . . 5 𝐵 = (Base‘𝐴)
5 mat1rhmval.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
6 mat1rhmval.f . . . . 5 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
72, 3, 4, 5, 6mat1rhmval 22501 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐹𝑋) = {⟨𝑂, 𝑋⟩})
87fveq1d 6909 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ((𝐹𝑋)‘⟨𝐸, 𝐸⟩) = ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩))
95eqcomi 2744 . . . . 5 𝐸, 𝐸⟩ = 𝑂
109fveq2i 6910 . . . 4 ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = ({⟨𝑂, 𝑋⟩}‘𝑂)
11 opex 5475 . . . . . 6 𝐸, 𝐸⟩ ∈ V
125, 11eqeltri 2835 . . . . 5 𝑂 ∈ V
13 simp3 1137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → 𝑋𝐾)
14 fvsng 7200 . . . . 5 ((𝑂 ∈ V ∧ 𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
1512, 13, 14sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
1610, 15eqtrid 2787 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
178, 16eqtrd 2775 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ((𝐹𝑋)‘⟨𝐸, 𝐸⟩) = 𝑋)
181, 17eqtrid 2787 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐸(𝐹𝑋)𝐸) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637  cmpt 5231  cfv 6563  (class class class)co 7431  Basecbs 17245  Ringcrg 20251   Mat cmat 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434
This theorem is referenced by:  mat1ghm  22505  mat1mhm  22506
  Copyright terms: Public domain W3C validator