MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1rhmelval Structured version   Visualization version   GIF version

Theorem mat1rhmelval 22486
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1rhmelval ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐸(𝐹𝑋)𝐸) = 𝑋)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂   𝑥,𝐸   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem mat1rhmelval
StepHypRef Expression
1 df-ov 7434 . 2 (𝐸(𝐹𝑋)𝐸) = ((𝐹𝑋)‘⟨𝐸, 𝐸⟩)
2 mat1rhmval.k . . . . 5 𝐾 = (Base‘𝑅)
3 mat1rhmval.a . . . . 5 𝐴 = ({𝐸} Mat 𝑅)
4 mat1rhmval.b . . . . 5 𝐵 = (Base‘𝐴)
5 mat1rhmval.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
6 mat1rhmval.f . . . . 5 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
72, 3, 4, 5, 6mat1rhmval 22485 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐹𝑋) = {⟨𝑂, 𝑋⟩})
87fveq1d 6908 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ((𝐹𝑋)‘⟨𝐸, 𝐸⟩) = ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩))
95eqcomi 2746 . . . . 5 𝐸, 𝐸⟩ = 𝑂
109fveq2i 6909 . . . 4 ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = ({⟨𝑂, 𝑋⟩}‘𝑂)
11 opex 5469 . . . . . 6 𝐸, 𝐸⟩ ∈ V
125, 11eqeltri 2837 . . . . 5 𝑂 ∈ V
13 simp3 1139 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → 𝑋𝐾)
14 fvsng 7200 . . . . 5 ((𝑂 ∈ V ∧ 𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
1512, 13, 14sylancr 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘𝑂) = 𝑋)
1610, 15eqtrid 2789 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ({⟨𝑂, 𝑋⟩}‘⟨𝐸, 𝐸⟩) = 𝑋)
178, 16eqtrd 2777 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → ((𝐹𝑋)‘⟨𝐸, 𝐸⟩) = 𝑋)
181, 17eqtrid 2789 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉𝑋𝐾) → (𝐸(𝐹𝑋)𝐸) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626  cop 4632  cmpt 5225  cfv 6561  (class class class)co 7431  Basecbs 17247  Ringcrg 20230   Mat cmat 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434
This theorem is referenced by:  mat1ghm  22489  mat1mhm  22490
  Copyright terms: Public domain W3C validator