![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1f1o | Structured version Visualization version GIF version |
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
Ref | Expression |
---|---|
mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
mat1rhmval.o | ⊢ 𝑂 = ⟨𝐸, 𝐸⟩ |
mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}) |
Ref | Expression |
---|---|
mat1f1o | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat1rhmval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
2 | 1 | fvexi 6902 | . . . 4 ⊢ 𝐾 ∈ V |
3 | mat1rhmval.o | . . . . 5 ⊢ 𝑂 = ⟨𝐸, 𝐸⟩ | |
4 | opex 5463 | . . . . 5 ⊢ ⟨𝐸, 𝐸⟩ ∈ V | |
5 | 3, 4 | eqeltri 2829 | . . . 4 ⊢ 𝑂 ∈ V |
6 | 2, 5 | pm3.2i 471 | . . 3 ⊢ (𝐾 ∈ V ∧ 𝑂 ∈ V) |
7 | vex 3478 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 5, 7 | xpsn 7135 | . . . . . 6 ⊢ ({𝑂} × {𝑥}) = {⟨𝑂, 𝑥⟩} |
9 | 8 | eqcomi 2741 | . . . . 5 ⊢ {⟨𝑂, 𝑥⟩} = ({𝑂} × {𝑥}) |
10 | 9 | mpteq2i 5252 | . . . 4 ⊢ (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}) = (𝑥 ∈ 𝐾 ↦ ({𝑂} × {𝑥})) |
11 | 10 | mapsnf1o 8929 | . . 3 ⊢ ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
12 | 6, 11 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
13 | mat1rhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}) | |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 = (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩})) |
15 | eqidd 2733 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐾 = 𝐾) | |
16 | mat1rhmval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
17 | 3 | sneqi 4638 | . . . . . . 7 ⊢ {𝑂} = {⟨𝐸, 𝐸⟩} |
18 | simpr 485 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
19 | xpsng 7133 | . . . . . . . 8 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩}) | |
20 | 18, 19 | sylancom 588 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩}) |
21 | 17, 20 | eqtr4id 2791 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → {𝑂} = ({𝐸} × {𝐸})) |
22 | 21 | oveq2d 7421 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (𝐾 ↑m ({𝐸} × {𝐸}))) |
23 | snfi 9040 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
24 | simpl 483 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) | |
25 | mat1rhmval.a | . . . . . . 7 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
26 | 25, 1 | matbas2 21914 | . . . . . 6 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
27 | 23, 24, 26 | sylancr 587 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
28 | 22, 27 | eqtrd 2772 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (Base‘𝐴)) |
29 | 16, 28 | eqtr4id 2791 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐵 = (𝐾 ↑m {𝑂})) |
30 | 14, 15, 29 | f1oeq123d 6824 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹:𝐾–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾–1-1-onto→(𝐾 ↑m {𝑂}))) |
31 | 12, 30 | mpbird 256 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4627 ⟨cop 4633 ↦ cmpt 5230 × cxp 5673 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ↑m cmap 8816 Fincfn 8935 Basecbs 17140 Ringcrg 20049 Mat cmat 21898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-pws 17391 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 df-mat 21899 |
This theorem is referenced by: mat1f 21975 mat1rngiso 21979 |
Copyright terms: Public domain | W3C validator |