MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1f1o Structured version   Visualization version   GIF version

Theorem mat1f1o 21608
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1f1o ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem mat1f1o
StepHypRef Expression
1 mat1rhmval.k . . . . 5 𝐾 = (Base‘𝑅)
21fvexi 6782 . . . 4 𝐾 ∈ V
3 mat1rhmval.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
4 opex 5381 . . . . 5 𝐸, 𝐸⟩ ∈ V
53, 4eqeltri 2836 . . . 4 𝑂 ∈ V
62, 5pm3.2i 470 . . 3 (𝐾 ∈ V ∧ 𝑂 ∈ V)
7 vex 3434 . . . . . . 7 𝑥 ∈ V
85, 7xpsn 7007 . . . . . 6 ({𝑂} × {𝑥}) = {⟨𝑂, 𝑥⟩}
98eqcomi 2748 . . . . 5 {⟨𝑂, 𝑥⟩} = ({𝑂} × {𝑥})
109mpteq2i 5183 . . . 4 (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}) = (𝑥𝐾 ↦ ({𝑂} × {𝑥}))
1110mapsnf1o 8701 . . 3 ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
126, 11mp1i 13 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
13 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1413a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}))
15 eqidd 2740 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐾 = 𝐾)
16 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
173sneqi 4577 . . . . . . 7 {𝑂} = {⟨𝐸, 𝐸⟩}
18 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
19 xpsng 7005 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2018, 19sylancom 587 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2117, 20eqtr4id 2798 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → {𝑂} = ({𝐸} × {𝐸}))
2221oveq2d 7284 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (𝐾m ({𝐸} × {𝐸})))
23 snfi 8804 . . . . . 6 {𝐸} ∈ Fin
24 simpl 482 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
25 mat1rhmval.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
2625, 1matbas2 21551 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2723, 24, 26sylancr 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2822, 27eqtrd 2779 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (Base‘𝐴))
2916, 28eqtr4id 2798 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐵 = (𝐾m {𝑂}))
3014, 15, 29f1oeq123d 6706 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾1-1-onto𝐵 ↔ (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂})))
3112, 30mpbird 256 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  {csn 4566  cop 4572  cmpt 5161   × cxp 5586  1-1-ontowf1o 6429  cfv 6430  (class class class)co 7268  m cmap 8589  Fincfn 8707  Basecbs 16893  Ringcrg 19764   Mat cmat 21535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-sup 9162  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-hom 16967  df-cco 16968  df-0g 17133  df-prds 17139  df-pws 17141  df-sra 20415  df-rgmod 20416  df-dsmm 20920  df-frlm 20935  df-mat 21536
This theorem is referenced by:  mat1f  21612  mat1rngiso  21616
  Copyright terms: Public domain W3C validator