![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1f1o | Structured version Visualization version GIF version |
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
Ref | Expression |
---|---|
mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
mat1rhmval.o | ⊢ 𝑂 = ⟨𝐸, 𝐸⟩ |
mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}) |
Ref | Expression |
---|---|
mat1f1o | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat1rhmval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
2 | 1 | fvexi 6898 | . . . 4 ⊢ 𝐾 ∈ V |
3 | mat1rhmval.o | . . . . 5 ⊢ 𝑂 = ⟨𝐸, 𝐸⟩ | |
4 | opex 5457 | . . . . 5 ⊢ ⟨𝐸, 𝐸⟩ ∈ V | |
5 | 3, 4 | eqeltri 2823 | . . . 4 ⊢ 𝑂 ∈ V |
6 | 2, 5 | pm3.2i 470 | . . 3 ⊢ (𝐾 ∈ V ∧ 𝑂 ∈ V) |
7 | vex 3472 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 5, 7 | xpsn 7134 | . . . . . 6 ⊢ ({𝑂} × {𝑥}) = {⟨𝑂, 𝑥⟩} |
9 | 8 | eqcomi 2735 | . . . . 5 ⊢ {⟨𝑂, 𝑥⟩} = ({𝑂} × {𝑥}) |
10 | 9 | mpteq2i 5246 | . . . 4 ⊢ (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}) = (𝑥 ∈ 𝐾 ↦ ({𝑂} × {𝑥})) |
11 | 10 | mapsnf1o 8932 | . . 3 ⊢ ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
12 | 6, 11 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
13 | mat1rhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}) | |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 = (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩})) |
15 | eqidd 2727 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐾 = 𝐾) | |
16 | mat1rhmval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
17 | 3 | sneqi 4634 | . . . . . . 7 ⊢ {𝑂} = {⟨𝐸, 𝐸⟩} |
18 | simpr 484 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
19 | xpsng 7132 | . . . . . . . 8 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩}) | |
20 | 18, 19 | sylancom 587 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩}) |
21 | 17, 20 | eqtr4id 2785 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → {𝑂} = ({𝐸} × {𝐸})) |
22 | 21 | oveq2d 7420 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (𝐾 ↑m ({𝐸} × {𝐸}))) |
23 | snfi 9043 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
24 | simpl 482 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) | |
25 | mat1rhmval.a | . . . . . . 7 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
26 | 25, 1 | matbas2 22273 | . . . . . 6 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
27 | 23, 24, 26 | sylancr 586 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
28 | 22, 27 | eqtrd 2766 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (Base‘𝐴)) |
29 | 16, 28 | eqtr4id 2785 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐵 = (𝐾 ↑m {𝑂})) |
30 | 14, 15, 29 | f1oeq123d 6820 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹:𝐾–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾–1-1-onto→(𝐾 ↑m {𝑂}))) |
31 | 12, 30 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 {csn 4623 ⟨cop 4629 ↦ cmpt 5224 × cxp 5667 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7404 ↑m cmap 8819 Fincfn 8938 Basecbs 17150 Ringcrg 20135 Mat cmat 22257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-ot 4632 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-hom 17227 df-cco 17228 df-0g 17393 df-prds 17399 df-pws 17401 df-sra 21018 df-rgmod 21019 df-dsmm 21622 df-frlm 21637 df-mat 22258 |
This theorem is referenced by: mat1f 22334 mat1rngiso 22338 |
Copyright terms: Public domain | W3C validator |