MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1f1o Structured version   Visualization version   GIF version

Theorem mat1f1o 22330
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1f1o ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem mat1f1o
StepHypRef Expression
1 mat1rhmval.k . . . . 5 𝐾 = (Base‘𝑅)
21fvexi 6898 . . . 4 𝐾 ∈ V
3 mat1rhmval.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
4 opex 5457 . . . . 5 𝐸, 𝐸⟩ ∈ V
53, 4eqeltri 2823 . . . 4 𝑂 ∈ V
62, 5pm3.2i 470 . . 3 (𝐾 ∈ V ∧ 𝑂 ∈ V)
7 vex 3472 . . . . . . 7 𝑥 ∈ V
85, 7xpsn 7134 . . . . . 6 ({𝑂} × {𝑥}) = {⟨𝑂, 𝑥⟩}
98eqcomi 2735 . . . . 5 {⟨𝑂, 𝑥⟩} = ({𝑂} × {𝑥})
109mpteq2i 5246 . . . 4 (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}) = (𝑥𝐾 ↦ ({𝑂} × {𝑥}))
1110mapsnf1o 8932 . . 3 ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
126, 11mp1i 13 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
13 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1413a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}))
15 eqidd 2727 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐾 = 𝐾)
16 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
173sneqi 4634 . . . . . . 7 {𝑂} = {⟨𝐸, 𝐸⟩}
18 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
19 xpsng 7132 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2018, 19sylancom 587 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2117, 20eqtr4id 2785 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → {𝑂} = ({𝐸} × {𝐸}))
2221oveq2d 7420 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (𝐾m ({𝐸} × {𝐸})))
23 snfi 9043 . . . . . 6 {𝐸} ∈ Fin
24 simpl 482 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
25 mat1rhmval.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
2625, 1matbas2 22273 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2723, 24, 26sylancr 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2822, 27eqtrd 2766 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (Base‘𝐴))
2916, 28eqtr4id 2785 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐵 = (𝐾m {𝑂}))
3014, 15, 29f1oeq123d 6820 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾1-1-onto𝐵 ↔ (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂})))
3112, 30mpbird 257 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  {csn 4623  cop 4629  cmpt 5224   × cxp 5667  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7404  m cmap 8819  Fincfn 8938  Basecbs 17150  Ringcrg 20135   Mat cmat 22257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-struct 17086  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-mulr 17217  df-sca 17219  df-vsca 17220  df-ip 17221  df-tset 17222  df-ple 17223  df-ds 17225  df-hom 17227  df-cco 17228  df-0g 17393  df-prds 17399  df-pws 17401  df-sra 21018  df-rgmod 21019  df-dsmm 21622  df-frlm 21637  df-mat 22258
This theorem is referenced by:  mat1f  22334  mat1rngiso  22338
  Copyright terms: Public domain W3C validator