MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1f1o Structured version   Visualization version   GIF version

Theorem mat1f1o 22500
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1f1o ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem mat1f1o
StepHypRef Expression
1 mat1rhmval.k . . . . 5 𝐾 = (Base‘𝑅)
21fvexi 6921 . . . 4 𝐾 ∈ V
3 mat1rhmval.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
4 opex 5475 . . . . 5 𝐸, 𝐸⟩ ∈ V
53, 4eqeltri 2835 . . . 4 𝑂 ∈ V
62, 5pm3.2i 470 . . 3 (𝐾 ∈ V ∧ 𝑂 ∈ V)
7 vex 3482 . . . . . . 7 𝑥 ∈ V
85, 7xpsn 7161 . . . . . 6 ({𝑂} × {𝑥}) = {⟨𝑂, 𝑥⟩}
98eqcomi 2744 . . . . 5 {⟨𝑂, 𝑥⟩} = ({𝑂} × {𝑥})
109mpteq2i 5253 . . . 4 (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}) = (𝑥𝐾 ↦ ({𝑂} × {𝑥}))
1110mapsnf1o 8978 . . 3 ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
126, 11mp1i 13 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
13 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1413a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}))
15 eqidd 2736 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐾 = 𝐾)
16 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
173sneqi 4642 . . . . . . 7 {𝑂} = {⟨𝐸, 𝐸⟩}
18 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
19 xpsng 7159 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2018, 19sylancom 588 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2117, 20eqtr4id 2794 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → {𝑂} = ({𝐸} × {𝐸}))
2221oveq2d 7447 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (𝐾m ({𝐸} × {𝐸})))
23 snfi 9082 . . . . . 6 {𝐸} ∈ Fin
24 simpl 482 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
25 mat1rhmval.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
2625, 1matbas2 22443 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2723, 24, 26sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2822, 27eqtrd 2775 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (Base‘𝐴))
2916, 28eqtr4id 2794 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐵 = (𝐾m {𝑂}))
3014, 15, 29f1oeq123d 6843 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾1-1-onto𝐵 ↔ (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂})))
3112, 30mpbird 257 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cop 4637  cmpt 5231   × cxp 5687  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984  Basecbs 17245  Ringcrg 20251   Mat cmat 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-mat 22428
This theorem is referenced by:  mat1f  22504  mat1rngiso  22508
  Copyright terms: Public domain W3C validator