Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat1f1o | Structured version Visualization version GIF version |
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
Ref | Expression |
---|---|
mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
mat1rhmval.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
Ref | Expression |
---|---|
mat1f1o | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat1rhmval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
2 | 1 | fvexi 6818 | . . . 4 ⊢ 𝐾 ∈ V |
3 | mat1rhmval.o | . . . . 5 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
4 | opex 5392 | . . . . 5 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
5 | 3, 4 | eqeltri 2833 | . . . 4 ⊢ 𝑂 ∈ V |
6 | 2, 5 | pm3.2i 472 | . . 3 ⊢ (𝐾 ∈ V ∧ 𝑂 ∈ V) |
7 | vex 3441 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 5, 7 | xpsn 7045 | . . . . . 6 ⊢ ({𝑂} × {𝑥}) = {〈𝑂, 𝑥〉} |
9 | 8 | eqcomi 2745 | . . . . 5 ⊢ {〈𝑂, 𝑥〉} = ({𝑂} × {𝑥}) |
10 | 9 | mpteq2i 5186 | . . . 4 ⊢ (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) = (𝑥 ∈ 𝐾 ↦ ({𝑂} × {𝑥})) |
11 | 10 | mapsnf1o 8758 | . . 3 ⊢ ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
12 | 6, 11 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
13 | mat1rhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) | |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉})) |
15 | eqidd 2737 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐾 = 𝐾) | |
16 | mat1rhmval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
17 | 3 | sneqi 4576 | . . . . . . 7 ⊢ {𝑂} = {〈𝐸, 𝐸〉} |
18 | simpr 486 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
19 | xpsng 7043 | . . . . . . . 8 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) | |
20 | 18, 19 | sylancom 589 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
21 | 17, 20 | eqtr4id 2795 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → {𝑂} = ({𝐸} × {𝐸})) |
22 | 21 | oveq2d 7323 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (𝐾 ↑m ({𝐸} × {𝐸}))) |
23 | snfi 8869 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
24 | simpl 484 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) | |
25 | mat1rhmval.a | . . . . . . 7 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
26 | 25, 1 | matbas2 21615 | . . . . . 6 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
27 | 23, 24, 26 | sylancr 588 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
28 | 22, 27 | eqtrd 2776 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (Base‘𝐴)) |
29 | 16, 28 | eqtr4id 2795 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐵 = (𝐾 ↑m {𝑂})) |
30 | 14, 15, 29 | f1oeq123d 6740 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹:𝐾–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂}))) |
31 | 12, 30 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 {csn 4565 〈cop 4571 ↦ cmpt 5164 × cxp 5598 –1-1-onto→wf1o 6457 ‘cfv 6458 (class class class)co 7307 ↑m cmap 8646 Fincfn 8764 Basecbs 16957 Ringcrg 19828 Mat cmat 21599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-hom 17031 df-cco 17032 df-0g 17197 df-prds 17203 df-pws 17205 df-sra 20479 df-rgmod 20480 df-dsmm 20984 df-frlm 20999 df-mat 21600 |
This theorem is referenced by: mat1f 21676 mat1rngiso 21680 |
Copyright terms: Public domain | W3C validator |