MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1f1o Structured version   Visualization version   GIF version

Theorem mat1f1o 22505
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1f1o ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem mat1f1o
StepHypRef Expression
1 mat1rhmval.k . . . . 5 𝐾 = (Base‘𝑅)
21fvexi 6934 . . . 4 𝐾 ∈ V
3 mat1rhmval.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
4 opex 5484 . . . . 5 𝐸, 𝐸⟩ ∈ V
53, 4eqeltri 2840 . . . 4 𝑂 ∈ V
62, 5pm3.2i 470 . . 3 (𝐾 ∈ V ∧ 𝑂 ∈ V)
7 vex 3492 . . . . . . 7 𝑥 ∈ V
85, 7xpsn 7175 . . . . . 6 ({𝑂} × {𝑥}) = {⟨𝑂, 𝑥⟩}
98eqcomi 2749 . . . . 5 {⟨𝑂, 𝑥⟩} = ({𝑂} × {𝑥})
109mpteq2i 5271 . . . 4 (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}) = (𝑥𝐾 ↦ ({𝑂} × {𝑥}))
1110mapsnf1o 8997 . . 3 ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
126, 11mp1i 13 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
13 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1413a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}))
15 eqidd 2741 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐾 = 𝐾)
16 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
173sneqi 4659 . . . . . . 7 {𝑂} = {⟨𝐸, 𝐸⟩}
18 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
19 xpsng 7173 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2018, 19sylancom 587 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2117, 20eqtr4id 2799 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → {𝑂} = ({𝐸} × {𝐸}))
2221oveq2d 7464 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (𝐾m ({𝐸} × {𝐸})))
23 snfi 9109 . . . . . 6 {𝐸} ∈ Fin
24 simpl 482 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
25 mat1rhmval.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
2625, 1matbas2 22448 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2723, 24, 26sylancr 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2822, 27eqtrd 2780 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (Base‘𝐴))
2916, 28eqtr4id 2799 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐵 = (𝐾m {𝑂}))
3014, 15, 29f1oeq123d 6856 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾1-1-onto𝐵 ↔ (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂})))
3112, 30mpbird 257 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cop 4654  cmpt 5249   × cxp 5698  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  Basecbs 17258  Ringcrg 20260   Mat cmat 22432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mat 22433
This theorem is referenced by:  mat1f  22509  mat1rngiso  22513
  Copyright terms: Public domain W3C validator