| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1f1o | Structured version Visualization version GIF version | ||
| Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| Ref | Expression |
|---|---|
| mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
| mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
| mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat1rhmval.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
| mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
| Ref | Expression |
|---|---|
| mat1f1o | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 2 | 1 | fvexi 6875 | . . . 4 ⊢ 𝐾 ∈ V |
| 3 | mat1rhmval.o | . . . . 5 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
| 4 | opex 5427 | . . . . 5 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
| 5 | 3, 4 | eqeltri 2825 | . . . 4 ⊢ 𝑂 ∈ V |
| 6 | 2, 5 | pm3.2i 470 | . . 3 ⊢ (𝐾 ∈ V ∧ 𝑂 ∈ V) |
| 7 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | 5, 7 | xpsn 7116 | . . . . . 6 ⊢ ({𝑂} × {𝑥}) = {〈𝑂, 𝑥〉} |
| 9 | 8 | eqcomi 2739 | . . . . 5 ⊢ {〈𝑂, 𝑥〉} = ({𝑂} × {𝑥}) |
| 10 | 9 | mpteq2i 5206 | . . . 4 ⊢ (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) = (𝑥 ∈ 𝐾 ↦ ({𝑂} × {𝑥})) |
| 11 | 10 | mapsnf1o 8915 | . . 3 ⊢ ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
| 12 | 6, 11 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
| 13 | mat1rhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) | |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉})) |
| 15 | eqidd 2731 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐾 = 𝐾) | |
| 16 | mat1rhmval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 17 | 3 | sneqi 4603 | . . . . . . 7 ⊢ {𝑂} = {〈𝐸, 𝐸〉} |
| 18 | simpr 484 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
| 19 | xpsng 7114 | . . . . . . . 8 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) | |
| 20 | 18, 19 | sylancom 588 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
| 21 | 17, 20 | eqtr4id 2784 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → {𝑂} = ({𝐸} × {𝐸})) |
| 22 | 21 | oveq2d 7406 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (𝐾 ↑m ({𝐸} × {𝐸}))) |
| 23 | snfi 9017 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
| 24 | simpl 482 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) | |
| 25 | mat1rhmval.a | . . . . . . 7 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
| 26 | 25, 1 | matbas2 22315 | . . . . . 6 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
| 27 | 23, 24, 26 | sylancr 587 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
| 28 | 22, 27 | eqtrd 2765 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (Base‘𝐴)) |
| 29 | 16, 28 | eqtr4id 2784 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐵 = (𝐾 ↑m {𝑂})) |
| 30 | 14, 15, 29 | f1oeq123d 6797 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹:𝐾–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂}))) |
| 31 | 12, 30 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 〈cop 4598 ↦ cmpt 5191 × cxp 5639 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 Basecbs 17186 Ringcrg 20149 Mat cmat 22301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-sra 21087 df-rgmod 21088 df-dsmm 21648 df-frlm 21663 df-mat 22302 |
| This theorem is referenced by: mat1f 22376 mat1rngiso 22380 |
| Copyright terms: Public domain | W3C validator |