| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mat1f1o | Structured version Visualization version GIF version | ||
| Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.) |
| Ref | Expression |
|---|---|
| mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
| mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
| mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
| mat1rhmval.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
| mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
| Ref | Expression |
|---|---|
| mat1f1o | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1rhmval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 2 | 1 | fvexi 6831 | . . . 4 ⊢ 𝐾 ∈ V |
| 3 | mat1rhmval.o | . . . . 5 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
| 4 | opex 5399 | . . . . 5 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
| 5 | 3, 4 | eqeltri 2827 | . . . 4 ⊢ 𝑂 ∈ V |
| 6 | 2, 5 | pm3.2i 470 | . . 3 ⊢ (𝐾 ∈ V ∧ 𝑂 ∈ V) |
| 7 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | 5, 7 | xpsn 7069 | . . . . . 6 ⊢ ({𝑂} × {𝑥}) = {〈𝑂, 𝑥〉} |
| 9 | 8 | eqcomi 2740 | . . . . 5 ⊢ {〈𝑂, 𝑥〉} = ({𝑂} × {𝑥}) |
| 10 | 9 | mpteq2i 5182 | . . . 4 ⊢ (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) = (𝑥 ∈ 𝐾 ↦ ({𝑂} × {𝑥})) |
| 11 | 10 | mapsnf1o 8858 | . . 3 ⊢ ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
| 12 | 6, 11 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂})) |
| 13 | mat1rhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) | |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉})) |
| 15 | eqidd 2732 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐾 = 𝐾) | |
| 16 | mat1rhmval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 17 | 3 | sneqi 4582 | . . . . . . 7 ⊢ {𝑂} = {〈𝐸, 𝐸〉} |
| 18 | simpr 484 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐸 ∈ 𝑉) | |
| 19 | xpsng 7067 | . . . . . . . 8 ⊢ ((𝐸 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) | |
| 20 | 18, 19 | sylancom 588 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → ({𝐸} × {𝐸}) = {〈𝐸, 𝐸〉}) |
| 21 | 17, 20 | eqtr4id 2785 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → {𝑂} = ({𝐸} × {𝐸})) |
| 22 | 21 | oveq2d 7357 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (𝐾 ↑m ({𝐸} × {𝐸}))) |
| 23 | snfi 8960 | . . . . . 6 ⊢ {𝐸} ∈ Fin | |
| 24 | simpl 482 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝑅 ∈ Ring) | |
| 25 | mat1rhmval.a | . . . . . . 7 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
| 26 | 25, 1 | matbas2 22331 | . . . . . 6 ⊢ (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
| 27 | 23, 24, 26 | sylancr 587 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m ({𝐸} × {𝐸})) = (Base‘𝐴)) |
| 28 | 22, 27 | eqtrd 2766 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐾 ↑m {𝑂}) = (Base‘𝐴)) |
| 29 | 16, 28 | eqtr4id 2785 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐵 = (𝐾 ↑m {𝑂})) |
| 30 | 14, 15, 29 | f1oeq123d 6752 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → (𝐹:𝐾–1-1-onto→𝐵 ↔ (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}):𝐾–1-1-onto→(𝐾 ↑m {𝑂}))) |
| 31 | 12, 30 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉) → 𝐹:𝐾–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 〈cop 4577 ↦ cmpt 5167 × cxp 5609 –1-1-onto→wf1o 6475 ‘cfv 6476 (class class class)co 7341 ↑m cmap 8745 Fincfn 8864 Basecbs 17115 Ringcrg 20146 Mat cmat 22317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-prds 17346 df-pws 17348 df-sra 21102 df-rgmod 21103 df-dsmm 21664 df-frlm 21679 df-mat 22318 |
| This theorem is referenced by: mat1f 22392 mat1rngiso 22396 |
| Copyright terms: Public domain | W3C validator |