MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1f1o Structured version   Visualization version   GIF version

Theorem mat1f1o 22484
Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
mat1rhmval.k 𝐾 = (Base‘𝑅)
mat1rhmval.a 𝐴 = ({𝐸} Mat 𝑅)
mat1rhmval.b 𝐵 = (Base‘𝐴)
mat1rhmval.o 𝑂 = ⟨𝐸, 𝐸
mat1rhmval.f 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
Assertion
Ref Expression
mat1f1o ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑂
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem mat1f1o
StepHypRef Expression
1 mat1rhmval.k . . . . 5 𝐾 = (Base‘𝑅)
21fvexi 6920 . . . 4 𝐾 ∈ V
3 mat1rhmval.o . . . . 5 𝑂 = ⟨𝐸, 𝐸
4 opex 5469 . . . . 5 𝐸, 𝐸⟩ ∈ V
53, 4eqeltri 2837 . . . 4 𝑂 ∈ V
62, 5pm3.2i 470 . . 3 (𝐾 ∈ V ∧ 𝑂 ∈ V)
7 vex 3484 . . . . . . 7 𝑥 ∈ V
85, 7xpsn 7161 . . . . . 6 ({𝑂} × {𝑥}) = {⟨𝑂, 𝑥⟩}
98eqcomi 2746 . . . . 5 {⟨𝑂, 𝑥⟩} = ({𝑂} × {𝑥})
109mpteq2i 5247 . . . 4 (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}) = (𝑥𝐾 ↦ ({𝑂} × {𝑥}))
1110mapsnf1o 8979 . . 3 ((𝐾 ∈ V ∧ 𝑂 ∈ V) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
126, 11mp1i 13 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂}))
13 mat1rhmval.f . . . 4 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩})
1413a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹 = (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}))
15 eqidd 2738 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐾 = 𝐾)
16 mat1rhmval.b . . . 4 𝐵 = (Base‘𝐴)
173sneqi 4637 . . . . . . 7 {𝑂} = {⟨𝐸, 𝐸⟩}
18 simpr 484 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐸𝑉)
19 xpsng 7159 . . . . . . . 8 ((𝐸𝑉𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2018, 19sylancom 588 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → ({𝐸} × {𝐸}) = {⟨𝐸, 𝐸⟩})
2117, 20eqtr4id 2796 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → {𝑂} = ({𝐸} × {𝐸}))
2221oveq2d 7447 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (𝐾m ({𝐸} × {𝐸})))
23 snfi 9083 . . . . . 6 {𝐸} ∈ Fin
24 simpl 482 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝑅 ∈ Ring)
25 mat1rhmval.a . . . . . . 7 𝐴 = ({𝐸} Mat 𝑅)
2625, 1matbas2 22427 . . . . . 6 (({𝐸} ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2723, 24, 26sylancr 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m ({𝐸} × {𝐸})) = (Base‘𝐴))
2822, 27eqtrd 2777 . . . 4 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐾m {𝑂}) = (Base‘𝐴))
2916, 28eqtr4id 2796 . . 3 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐵 = (𝐾m {𝑂}))
3014, 15, 29f1oeq123d 6842 . 2 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → (𝐹:𝐾1-1-onto𝐵 ↔ (𝑥𝐾 ↦ {⟨𝑂, 𝑥⟩}):𝐾1-1-onto→(𝐾m {𝑂})))
3112, 30mpbird 257 1 ((𝑅 ∈ Ring ∧ 𝐸𝑉) → 𝐹:𝐾1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626  cop 4632  cmpt 5225   × cxp 5683  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  Basecbs 17247  Ringcrg 20230   Mat cmat 22411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-prds 17492  df-pws 17494  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-mat 22412
This theorem is referenced by:  mat1f  22488  mat1rngiso  22492
  Copyright terms: Public domain W3C validator