![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimatp | Structured version Visualization version GIF version |
Description: The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
fnimatp.1 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fnimatp.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fnimatp.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
fnimatp.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Ref | Expression |
---|---|
fnimatp | ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnimatp.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | fnimatp.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
3 | fnimatp.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
4 | fnimapr 6976 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) → (𝐹 “ {𝐴, 𝐵}) = {(𝐹‘𝐴), (𝐹‘𝐵)}) | |
5 | 1, 2, 3, 4 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵}) = {(𝐹‘𝐴), (𝐹‘𝐵)}) |
6 | fnimatp.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
7 | fnsnfv 6971 | . . . . 5 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐶 ∈ 𝐷) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) | |
8 | 1, 6, 7 | syl2anc 585 | . . . 4 ⊢ (𝜑 → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) |
9 | 8 | eqcomd 2739 | . . 3 ⊢ (𝜑 → (𝐹 “ {𝐶}) = {(𝐹‘𝐶)}) |
10 | 5, 9 | uneq12d 4165 | . 2 ⊢ (𝜑 → ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹‘𝐴), (𝐹‘𝐵)} ∪ {(𝐹‘𝐶)})) |
11 | df-tp 4634 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
12 | 11 | imaeq2i 6058 | . . 3 ⊢ (𝐹 “ {𝐴, 𝐵, 𝐶}) = (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶})) |
13 | imaundi 6150 | . . 3 ⊢ (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) | |
14 | 12, 13 | eqtri 2761 | . 2 ⊢ (𝐹 “ {𝐴, 𝐵, 𝐶}) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) |
15 | df-tp 4634 | . 2 ⊢ {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)} = ({(𝐹‘𝐴), (𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) | |
16 | 10, 14, 15 | 3eqtr4g 2798 | 1 ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 {csn 4629 {cpr 4631 {ctp 4633 “ cima 5680 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: s3rn 32112 |
Copyright terms: Public domain | W3C validator |