Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimatp | Structured version Visualization version GIF version |
Description: The image of an unordered triple under a function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
Ref | Expression |
---|---|
fnimatp.1 | ⊢ (𝜑 → 𝐹 Fn 𝐷) |
fnimatp.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fnimatp.3 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
fnimatp.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Ref | Expression |
---|---|
fnimatp | ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnimatp.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐷) | |
2 | fnimatp.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
3 | fnimatp.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
4 | fnimapr 6852 | . . . 4 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷) → (𝐹 “ {𝐴, 𝐵}) = {(𝐹‘𝐴), (𝐹‘𝐵)}) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵}) = {(𝐹‘𝐴), (𝐹‘𝐵)}) |
6 | fnimatp.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
7 | fnsnfv 6847 | . . . . 5 ⊢ ((𝐹 Fn 𝐷 ∧ 𝐶 ∈ 𝐷) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) | |
8 | 1, 6, 7 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) |
9 | 8 | eqcomd 2744 | . . 3 ⊢ (𝜑 → (𝐹 “ {𝐶}) = {(𝐹‘𝐶)}) |
10 | 5, 9 | uneq12d 4098 | . 2 ⊢ (𝜑 → ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹‘𝐴), (𝐹‘𝐵)} ∪ {(𝐹‘𝐶)})) |
11 | df-tp 4566 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
12 | 11 | imaeq2i 5967 | . . 3 ⊢ (𝐹 “ {𝐴, 𝐵, 𝐶}) = (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶})) |
13 | imaundi 6053 | . . 3 ⊢ (𝐹 “ ({𝐴, 𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) | |
14 | 12, 13 | eqtri 2766 | . 2 ⊢ (𝐹 “ {𝐴, 𝐵, 𝐶}) = ((𝐹 “ {𝐴, 𝐵}) ∪ (𝐹 “ {𝐶})) |
15 | df-tp 4566 | . 2 ⊢ {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)} = ({(𝐹‘𝐴), (𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) | |
16 | 10, 14, 15 | 3eqtr4g 2803 | 1 ⊢ (𝜑 → (𝐹 “ {𝐴, 𝐵, 𝐶}) = {(𝐹‘𝐴), (𝐹‘𝐵), (𝐹‘𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 {csn 4561 {cpr 4563 {ctp 4565 “ cima 5592 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: s3rn 31220 |
Copyright terms: Public domain | W3C validator |