![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsumsplit | Structured version Visualization version GIF version |
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.) |
Ref | Expression |
---|---|
fsumsplit.1 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
fsumsplit.2 | ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) |
fsumsplit.3 | ⊢ (𝜑 → 𝑈 ∈ Fin) |
fsumsplit.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
fsumsplit | ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4167 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | fsumsplit.2 | . . . . 5 ⊢ (𝜑 → 𝑈 = (𝐴 ∪ 𝐵)) | |
3 | 1, 2 | sseqtrrid 4030 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑈) |
4 | 3 | sselda 3977 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑈) |
5 | fsumsplit.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → 𝐶 ∈ ℂ) | |
6 | 4, 5 | syldan 590 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
7 | 6 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
8 | fsumsplit.3 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Fin) | |
9 | 8 | olcd 871 | . . . 4 ⊢ (𝜑 → (𝑈 ⊆ (ℤ≥‘0) ∨ 𝑈 ∈ Fin)) |
10 | sumss2 15678 | . . . 4 ⊢ (((𝐴 ⊆ 𝑈 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ≥‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 0)) | |
11 | 3, 7, 9, 10 | syl21anc 835 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
12 | ssun2 4168 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
13 | 12, 2 | sseqtrrid 4030 | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ 𝑈) |
14 | 13 | sselda 3977 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝑈) |
15 | 14, 5 | syldan 590 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
16 | 15 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
17 | sumss2 15678 | . . . 4 ⊢ (((𝐵 ⊆ 𝑈 ∧ ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ≥‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 0)) | |
18 | 13, 16, 9, 17 | syl21anc 835 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 0)) |
19 | 11, 18 | oveq12d 7423 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶) = (Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 0) + Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 0))) |
20 | 0cn 11210 | . . . 4 ⊢ 0 ∈ ℂ | |
21 | ifcl 4568 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ 𝐴, 𝐶, 0) ∈ ℂ) | |
22 | 5, 20, 21 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → if(𝑘 ∈ 𝐴, 𝐶, 0) ∈ ℂ) |
23 | ifcl 4568 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ 𝐵, 𝐶, 0) ∈ ℂ) | |
24 | 5, 20, 23 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → if(𝑘 ∈ 𝐵, 𝐶, 0) ∈ ℂ) |
25 | 8, 22, 24 | fsumadd 15692 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐴, 𝐶, 0) + Σ𝑘 ∈ 𝑈 if(𝑘 ∈ 𝐵, 𝐶, 0))) |
26 | 2 | eleq2d 2813 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝑈 ↔ 𝑘 ∈ (𝐴 ∪ 𝐵))) |
27 | elun 4143 | . . . . . 6 ⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) | |
28 | 26, 27 | bitrdi 287 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝑈 ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵))) |
29 | 28 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
30 | iftrue 4529 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) | |
31 | 30 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) |
32 | noel 4325 | . . . . . . . . . . 11 ⊢ ¬ 𝑘 ∈ ∅ | |
33 | fsumsplit.1 | . . . . . . . . . . . . 13 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
34 | 33 | eleq2d 2813 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑘 ∈ (𝐴 ∩ 𝐵) ↔ 𝑘 ∈ ∅)) |
35 | elin 3959 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ (𝐴 ∩ 𝐵) ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) | |
36 | 34, 35 | bitr3di 286 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵))) |
37 | 32, 36 | mtbii 326 | . . . . . . . . . 10 ⊢ (𝜑 → ¬ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) |
38 | imnan 399 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵) ↔ ¬ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) | |
39 | 37, 38 | sylibr 233 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵)) |
40 | 39 | imp 406 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐵) |
41 | 40 | iffalsed 4534 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐵, 𝐶, 0) = 0) |
42 | 31, 41 | oveq12d 7423 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (𝐶 + 0)) |
43 | 6 | addridd 11418 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 + 0) = 𝐶) |
44 | 42, 43 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = 𝐶) |
45 | 39 | con2d 134 | . . . . . . . . 9 ⊢ (𝜑 → (𝑘 ∈ 𝐵 → ¬ 𝑘 ∈ 𝐴)) |
46 | 45 | imp 406 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ¬ 𝑘 ∈ 𝐴) |
47 | 46 | iffalsed 4534 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐴, 𝐶, 0) = 0) |
48 | iftrue 4529 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, 𝐶, 0) = 𝐶) | |
49 | 48 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 0) = 𝐶) |
50 | 47, 49 | oveq12d 7423 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (0 + 𝐶)) |
51 | 15 | addlidd 11419 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (0 + 𝐶) = 𝐶) |
52 | 50, 51 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = 𝐶) |
53 | 44, 52 | jaodan 954 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = 𝐶) |
54 | 29, 53 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑈) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = 𝐶) |
55 | 54 | sumeq2dv 15655 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = Σ𝑘 ∈ 𝑈 𝐶) |
56 | 19, 25, 55 | 3eqtr2rd 2773 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑈 𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∪ cun 3941 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 ifcif 4523 ‘cfv 6537 (class class class)co 7405 Fincfn 8941 ℂcc 11110 0cc0 11112 + caddc 11115 ℤ≥cuz 12826 Σcsu 15638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-fz 13491 df-fzo 13634 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-sum 15639 |
This theorem is referenced by: fsumsplitf 15694 sumpr 15700 sumtp 15701 fsumm1 15703 fsum1p 15705 fsumsplitsnun 15707 fsum2dlem 15722 fsumless 15748 fsumabs 15753 fsumrlim 15763 fsumo1 15764 o1fsum 15765 cvgcmpce 15770 fsumiun 15773 incexclem 15788 incexc 15789 isumltss 15800 climcndslem1 15801 climcndslem2 15802 mertenslem1 15836 bitsinv1 16390 bitsinvp1 16397 sylow2a 19539 fsumcn 24743 ovolfiniun 25385 volfiniun 25431 uniioombllem3 25469 itgfsum 25711 dvmptfsum 25862 vieta1lem2 26201 mtest 26295 birthdaylem2 26839 fsumharmonic 26899 ftalem5 26964 chtprm 27040 chtdif 27045 perfectlem2 27118 lgsquadlem2 27269 dchrisumlem1 27377 dchrisumlem2 27378 rpvmasum2 27400 dchrisum0lem1b 27403 dchrisum0lem3 27407 pntrsumbnd2 27455 pntrlog2bndlem6 27471 pntpbnd2 27475 pntlemf 27493 axlowdimlem16 28723 axlowdimlem17 28724 vtxdgoddnumeven 29319 indsumin 33550 signsplypnf 34091 fsum2dsub 34148 hgt750lemd 34189 tgoldbachgtde 34201 sticksstones6 41528 sticksstones7 41529 sumcubes 41769 jm2.22 42312 jm2.23 42313 sumpair 44295 sumnnodd 44918 stoweidlem11 45299 stoweidlem26 45314 stoweidlem44 45332 sge0resplit 45694 sge0split 45697 fsumsplitsndif 46613 perfectALTVlem2 46962 |
Copyright terms: Public domain | W3C validator |