MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit Structured version   Visualization version   GIF version

Theorem fsumsplit 15773
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
StepHypRef Expression
1 ssun1 4187 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2sseqtrrid 4048 . . . 4 (𝜑𝐴𝑈)
43sselda 3994 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
5 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
64, 5syldan 591 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
76ralrimiva 3143 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
8 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
98olcd 874 . . . 4 (𝜑 → (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin))
10 sumss2 15758 . . . 4 (((𝐴𝑈 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
113, 7, 9, 10syl21anc 838 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
12 ssun2 4188 . . . . 5 𝐵 ⊆ (𝐴𝐵)
1312, 2sseqtrrid 4048 . . . 4 (𝜑𝐵𝑈)
1413sselda 3994 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
1514, 5syldan 591 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
1615ralrimiva 3143 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
17 sumss2 15758 . . . 4 (((𝐵𝑈 ∧ ∀𝑘𝐵 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1813, 16, 9, 17syl21anc 838 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1911, 18oveq12d 7448 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
20 0cn 11250 . . . 4 0 ∈ ℂ
21 ifcl 4575 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
225, 20, 21sylancl 586 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
23 ifcl 4575 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
245, 20, 23sylancl 586 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
258, 22, 24fsumadd 15772 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
262eleq2d 2824 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
27 elun 4162 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
2826, 27bitrdi 287 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
2928biimpa 476 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
30 iftrue 4536 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3130adantl 481 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
32 noel 4343 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
33 fsumsplit.1 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3433eleq2d 2824 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
35 elin 3978 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
3634, 35bitr3di 286 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
3732, 36mtbii 326 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
38 imnan 399 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
3937, 38sylibr 234 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4039imp 406 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4140iffalsed 4541 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
4231, 41oveq12d 7448 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
436addridd 11458 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
4442, 43eqtrd 2774 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
4539con2d 134 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
4645imp 406 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
4746iffalsed 4541 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
48 iftrue 4536 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
4948adantl 481 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
5047, 49oveq12d 7448 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
5115addlidd 11459 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
5250, 51eqtrd 2774 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5344, 52jaodan 959 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5429, 53syldan 591 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5554sumeq2dv 15734 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
5619, 25, 553eqtr2rd 2781 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wral 3058  cun 3960  cin 3961  wss 3962  c0 4338  ifcif 4530  cfv 6562  (class class class)co 7430  Fincfn 8983  cc 11150  0cc0 11152   + caddc 11155  cuz 12875  Σcsu 15718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719
This theorem is referenced by:  fsumsplitf  15774  sumpr  15780  sumtp  15781  fsumm1  15783  fsum1p  15785  fsumsplitsnun  15787  fsum2dlem  15802  fsumless  15828  fsumabs  15833  fsumrlim  15843  fsumo1  15844  o1fsum  15845  cvgcmpce  15850  fsumiun  15853  incexclem  15868  incexc  15869  isumltss  15880  climcndslem1  15881  climcndslem2  15882  mertenslem1  15916  bitsinv1  16475  bitsinvp1  16482  sylow2a  19651  fsumcn  24907  ovolfiniun  25549  volfiniun  25595  uniioombllem3  25633  itgfsum  25876  dvmptfsum  26027  vieta1lem2  26367  mtest  26461  birthdaylem2  27009  fsumharmonic  27069  ftalem5  27134  chtprm  27210  chtdif  27215  perfectlem2  27288  lgsquadlem2  27439  dchrisumlem1  27547  dchrisumlem2  27548  rpvmasum2  27570  dchrisum0lem1b  27573  dchrisum0lem3  27577  pntrsumbnd2  27625  pntrlog2bndlem6  27641  pntpbnd2  27645  pntlemf  27663  axlowdimlem16  28986  axlowdimlem17  28987  vtxdgoddnumeven  29585  indsumin  34002  signsplypnf  34543  fsum2dsub  34600  hgt750lemd  34641  tgoldbachgtde  34653  sticksstones6  42132  sticksstones7  42133  sumcubes  42325  jm2.22  42983  jm2.23  42984  sumpair  44972  sumnnodd  45585  stoweidlem11  45966  stoweidlem26  45981  stoweidlem44  45999  sge0resplit  46361  sge0split  46364  fsumsplitsndif  47297  perfectALTVlem2  47646
  Copyright terms: Public domain W3C validator