MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit Structured version   Visualization version   GIF version

Theorem fsumsplit 15719
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
StepHypRef Expression
1 ssun1 4166 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2sseqtrrid 4026 . . . 4 (𝜑𝐴𝑈)
43sselda 3972 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
5 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
64, 5syldan 589 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
76ralrimiva 3136 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
8 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
98olcd 872 . . . 4 (𝜑 → (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin))
10 sumss2 15704 . . . 4 (((𝐴𝑈 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
113, 7, 9, 10syl21anc 836 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
12 ssun2 4167 . . . . 5 𝐵 ⊆ (𝐴𝐵)
1312, 2sseqtrrid 4026 . . . 4 (𝜑𝐵𝑈)
1413sselda 3972 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
1514, 5syldan 589 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
1615ralrimiva 3136 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
17 sumss2 15704 . . . 4 (((𝐵𝑈 ∧ ∀𝑘𝐵 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1813, 16, 9, 17syl21anc 836 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1911, 18oveq12d 7434 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
20 0cn 11236 . . . 4 0 ∈ ℂ
21 ifcl 4569 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
225, 20, 21sylancl 584 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
23 ifcl 4569 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
245, 20, 23sylancl 584 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
258, 22, 24fsumadd 15718 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
262eleq2d 2811 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
27 elun 4141 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
2826, 27bitrdi 286 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
2928biimpa 475 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
30 iftrue 4530 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3130adantl 480 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
32 noel 4326 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
33 fsumsplit.1 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3433eleq2d 2811 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
35 elin 3955 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
3634, 35bitr3di 285 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
3732, 36mtbii 325 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
38 imnan 398 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
3937, 38sylibr 233 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4039imp 405 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4140iffalsed 4535 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
4231, 41oveq12d 7434 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
436addridd 11444 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
4442, 43eqtrd 2765 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
4539con2d 134 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
4645imp 405 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
4746iffalsed 4535 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
48 iftrue 4530 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
4948adantl 480 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
5047, 49oveq12d 7434 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
5115addlidd 11445 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
5250, 51eqtrd 2765 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5344, 52jaodan 955 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5429, 53syldan 589 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5554sumeq2dv 15681 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
5619, 25, 553eqtr2rd 2772 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1533  wcel 2098  wral 3051  cun 3937  cin 3938  wss 3939  c0 4318  ifcif 4524  cfv 6543  (class class class)co 7416  Fincfn 8962  cc 11136  0cc0 11138   + caddc 11141  cuz 12852  Σcsu 15664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-sum 15665
This theorem is referenced by:  fsumsplitf  15720  sumpr  15726  sumtp  15727  fsumm1  15729  fsum1p  15731  fsumsplitsnun  15733  fsum2dlem  15748  fsumless  15774  fsumabs  15779  fsumrlim  15789  fsumo1  15790  o1fsum  15791  cvgcmpce  15796  fsumiun  15799  incexclem  15814  incexc  15815  isumltss  15826  climcndslem1  15827  climcndslem2  15828  mertenslem1  15862  bitsinv1  16416  bitsinvp1  16423  sylow2a  19578  fsumcn  24806  ovolfiniun  25448  volfiniun  25494  uniioombllem3  25532  itgfsum  25774  dvmptfsum  25925  vieta1lem2  26264  mtest  26358  birthdaylem2  26902  fsumharmonic  26962  ftalem5  27027  chtprm  27103  chtdif  27108  perfectlem2  27181  lgsquadlem2  27332  dchrisumlem1  27440  dchrisumlem2  27441  rpvmasum2  27463  dchrisum0lem1b  27466  dchrisum0lem3  27470  pntrsumbnd2  27518  pntrlog2bndlem6  27534  pntpbnd2  27538  pntlemf  27556  axlowdimlem16  28812  axlowdimlem17  28813  vtxdgoddnumeven  29411  indsumin  33698  signsplypnf  34239  fsum2dsub  34296  hgt750lemd  34337  tgoldbachgtde  34349  sticksstones6  41679  sticksstones7  41680  sumcubes  41938  jm2.22  42481  jm2.23  42482  sumpair  44462  sumnnodd  45081  stoweidlem11  45462  stoweidlem26  45477  stoweidlem44  45495  sge0resplit  45857  sge0split  45860  fsumsplitsndif  46776  perfectALTVlem2  47125
  Copyright terms: Public domain W3C validator