MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit Structured version   Visualization version   GIF version

Theorem fsumsplit 15643
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
StepHypRef Expression
1 ssun1 4123 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2sseqtrrid 3973 . . . 4 (𝜑𝐴𝑈)
43sselda 3929 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
5 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
64, 5syldan 591 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
76ralrimiva 3124 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
8 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
98olcd 874 . . . 4 (𝜑 → (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin))
10 sumss2 15628 . . . 4 (((𝐴𝑈 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
113, 7, 9, 10syl21anc 837 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
12 ssun2 4124 . . . . 5 𝐵 ⊆ (𝐴𝐵)
1312, 2sseqtrrid 3973 . . . 4 (𝜑𝐵𝑈)
1413sselda 3929 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
1514, 5syldan 591 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
1615ralrimiva 3124 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
17 sumss2 15628 . . . 4 (((𝐵𝑈 ∧ ∀𝑘𝐵 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1813, 16, 9, 17syl21anc 837 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1911, 18oveq12d 7359 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
20 0cn 11099 . . . 4 0 ∈ ℂ
21 ifcl 4516 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
225, 20, 21sylancl 586 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
23 ifcl 4516 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
245, 20, 23sylancl 586 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
258, 22, 24fsumadd 15642 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
262eleq2d 2817 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
27 elun 4098 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
2826, 27bitrdi 287 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
2928biimpa 476 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
30 iftrue 4476 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3130adantl 481 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
32 noel 4283 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
33 fsumsplit.1 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3433eleq2d 2817 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
35 elin 3913 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
3634, 35bitr3di 286 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
3732, 36mtbii 326 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
38 imnan 399 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
3937, 38sylibr 234 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4039imp 406 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4140iffalsed 4481 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
4231, 41oveq12d 7359 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
436addridd 11308 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
4442, 43eqtrd 2766 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
4539con2d 134 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
4645imp 406 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
4746iffalsed 4481 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
48 iftrue 4476 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
4948adantl 481 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
5047, 49oveq12d 7359 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
5115addlidd 11309 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
5250, 51eqtrd 2766 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5344, 52jaodan 959 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5429, 53syldan 591 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5554sumeq2dv 15604 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
5619, 25, 553eqtr2rd 2773 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  cun 3895  cin 3896  wss 3897  c0 4278  ifcif 4470  cfv 6476  (class class class)co 7341  Fincfn 8864  cc 10999  0cc0 11001   + caddc 11004  cuz 12727  Σcsu 15588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-sum 15589
This theorem is referenced by:  fsumsplitf  15644  sumpr  15650  sumtp  15651  fsumm1  15653  fsum1p  15655  fsumsplitsnun  15657  fsum2dlem  15672  fsumless  15698  fsumabs  15703  fsumrlim  15713  fsumo1  15714  o1fsum  15715  cvgcmpce  15720  fsumiun  15723  incexclem  15738  incexc  15739  isumltss  15750  climcndslem1  15751  climcndslem2  15752  mertenslem1  15786  bitsinv1  16348  bitsinvp1  16355  sylow2a  19526  fsumcn  24783  ovolfiniun  25424  volfiniun  25470  uniioombllem3  25508  itgfsum  25750  dvmptfsum  25901  vieta1lem2  26241  mtest  26335  birthdaylem2  26884  fsumharmonic  26944  ftalem5  27009  chtprm  27085  chtdif  27090  perfectlem2  27163  lgsquadlem2  27314  dchrisumlem1  27422  dchrisumlem2  27423  rpvmasum2  27445  dchrisum0lem1b  27448  dchrisum0lem3  27452  pntrsumbnd2  27500  pntrlog2bndlem6  27516  pntpbnd2  27520  pntlemf  27538  axlowdimlem16  28930  axlowdimlem17  28931  vtxdgoddnumeven  29527  indsumin  32835  signsplypnf  34555  fsum2dsub  34612  hgt750lemd  34653  tgoldbachgtde  34665  sticksstones6  42184  sticksstones7  42185  sumcubes  42346  jm2.22  43028  jm2.23  43029  sumpair  45072  sumnnodd  45670  stoweidlem11  46049  stoweidlem26  46064  stoweidlem44  46082  sge0resplit  46444  sge0split  46447  fsumsplitsndif  47404  perfectALTVlem2  47753
  Copyright terms: Public domain W3C validator