MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplit Structured version   Visualization version   GIF version

Theorem fsumsplit 14756
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1 (𝜑 → (𝐴𝐵) = ∅)
fsumsplit.2 (𝜑𝑈 = (𝐴𝐵))
fsumsplit.3 (𝜑𝑈 ∈ Fin)
fsumsplit.4 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
Assertion
Ref Expression
fsumsplit (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   𝑈,𝑘
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem fsumsplit
StepHypRef Expression
1 ssun1 3938 . . . . 5 𝐴 ⊆ (𝐴𝐵)
2 fsumsplit.2 . . . . 5 (𝜑𝑈 = (𝐴𝐵))
31, 2syl5sseqr 3814 . . . 4 (𝜑𝐴𝑈)
43sselda 3761 . . . . . 6 ((𝜑𝑘𝐴) → 𝑘𝑈)
5 fsumsplit.4 . . . . . 6 ((𝜑𝑘𝑈) → 𝐶 ∈ ℂ)
64, 5syldan 585 . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
76ralrimiva 3113 . . . 4 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
8 fsumsplit.3 . . . . 5 (𝜑𝑈 ∈ Fin)
98olcd 900 . . . 4 (𝜑 → (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin))
10 sumss2 14742 . . . 4 (((𝐴𝑈 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
113, 7, 9, 10syl21anc 866 . . 3 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0))
12 ssun2 3939 . . . . 5 𝐵 ⊆ (𝐴𝐵)
1312, 2syl5sseqr 3814 . . . 4 (𝜑𝐵𝑈)
1413sselda 3761 . . . . . 6 ((𝜑𝑘𝐵) → 𝑘𝑈)
1514, 5syldan 585 . . . . 5 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
1615ralrimiva 3113 . . . 4 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
17 sumss2 14742 . . . 4 (((𝐵𝑈 ∧ ∀𝑘𝐵 𝐶 ∈ ℂ) ∧ (𝑈 ⊆ (ℤ‘0) ∨ 𝑈 ∈ Fin)) → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1813, 16, 9, 17syl21anc 866 . . 3 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0))
1911, 18oveq12d 6860 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
20 0cn 10285 . . . 4 0 ∈ ℂ
21 ifcl 4287 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
225, 20, 21sylancl 580 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
23 ifcl 4287 . . . 4 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
245, 20, 23sylancl 580 . . 3 ((𝜑𝑘𝑈) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
258, 22, 24fsumadd 14755 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑈 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑈 if(𝑘𝐵, 𝐶, 0)))
262eleq2d 2830 . . . . . 6 (𝜑 → (𝑘𝑈𝑘 ∈ (𝐴𝐵)))
27 elun 3915 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
2826, 27syl6bb 278 . . . . 5 (𝜑 → (𝑘𝑈 ↔ (𝑘𝐴𝑘𝐵)))
2928biimpa 468 . . . 4 ((𝜑𝑘𝑈) → (𝑘𝐴𝑘𝐵))
30 iftrue 4249 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
3130adantl 473 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
32 noel 4083 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
33 elin 3958 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
34 fsumsplit.1 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
3534eleq2d 2830 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
3633, 35syl5rbbr 277 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
3732, 36mtbii 317 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
38 imnan 388 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
3937, 38sylibr 225 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4039imp 395 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4140iffalsed 4254 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
4231, 41oveq12d 6860 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
436addid1d 10490 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
4442, 43eqtrd 2799 . . . . 5 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
4539con2d 131 . . . . . . . . 9 (𝜑 → (𝑘𝐵 → ¬ 𝑘𝐴))
4645imp 395 . . . . . . . 8 ((𝜑𝑘𝐵) → ¬ 𝑘𝐴)
4746iffalsed 4254 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐴, 𝐶, 0) = 0)
48 iftrue 4249 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
4948adantl 473 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
5047, 49oveq12d 6860 . . . . . 6 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + 𝐶))
5115addid2d 10491 . . . . . 6 ((𝜑𝑘𝐵) → (0 + 𝐶) = 𝐶)
5250, 51eqtrd 2799 . . . . 5 ((𝜑𝑘𝐵) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5344, 52jaodan 980 . . . 4 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5429, 53syldan 585 . . 3 ((𝜑𝑘𝑈) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = 𝐶)
5554sumeq2dv 14718 . 2 (𝜑 → Σ𝑘𝑈 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = Σ𝑘𝑈 𝐶)
5619, 25, 553eqtr2rd 2806 1 (𝜑 → Σ𝑘𝑈 𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wo 873   = wceq 1652  wcel 2155  wral 3055  cun 3730  cin 3731  wss 3732  c0 4079  ifcif 4243  cfv 6068  (class class class)co 6842  Fincfn 8160  cc 10187  0cc0 10189   + caddc 10192  cuz 11886  Σcsu 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702
This theorem is referenced by:  fsumsplitf  14757  sumpr  14762  sumtp  14763  fsumm1  14765  fsum1p  14767  fsumsplitsnun  14769  fsumsplitsnunOLD  14771  fsum2dlem  14786  fsumless  14812  fsumabs  14817  fsumrlim  14827  fsumo1  14828  o1fsum  14829  cvgcmpce  14834  fsumiun  14837  incexclem  14852  incexc  14853  isumltss  14864  climcndslem1  14865  climcndslem2  14866  mertenslem1  14899  bitsinv1  15445  bitsinvp1  15452  sylow2a  18298  fsumcn  22952  ovolfiniun  23559  volfiniun  23605  uniioombllem3  23643  itgfsum  23884  dvmptfsum  24029  vieta1lem2  24357  mtest  24449  birthdaylem2  24970  fsumharmonic  25029  ftalem5  25094  chtprm  25170  chtdif  25175  perfectlem2  25246  lgsquadlem2  25397  dchrisumlem1  25469  dchrisumlem2  25470  rpvmasum2  25492  dchrisum0lem1b  25495  dchrisum0lem3  25499  pntrsumbnd2  25547  pntrlog2bndlem6  25563  pntpbnd2  25567  pntlemf  25585  axlowdimlem16  26128  axlowdimlem17  26129  vtxdgoddnumeven  26740  indsumin  30531  signsplypnf  31076  fsum2dsub  31136  hgt750lemd  31177  tgoldbachgtde  31189  jm2.22  38239  jm2.23  38240  sumpair  39846  sumnnodd  40500  stoweidlem11  40865  stoweidlem26  40880  stoweidlem44  40898  sge0resplit  41260  sge0split  41263  fsumsplitsndif  42077  perfectALTVlem2  42307
  Copyright terms: Public domain W3C validator