| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodm1 | Structured version Visualization version GIF version | ||
| Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.) |
| Ref | Expression |
|---|---|
| fprodm1.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| fprodm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
| fprodm1.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fprodm1 | ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzp1nel 13651 | . . . . 5 ⊢ ¬ ((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) | |
| 2 | fprodm1.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 3 | eluzelz 12888 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 5 | 4 | zcnd 12723 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 6 | 1cnd 11256 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 7 | 5, 6 | npcand 11624 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
| 8 | 7 | eleq1d 2826 | . . . . 5 ⊢ (𝜑 → (((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) ↔ 𝑁 ∈ (𝑀...(𝑁 − 1)))) |
| 9 | 1, 8 | mtbii 326 | . . . 4 ⊢ (𝜑 → ¬ 𝑁 ∈ (𝑀...(𝑁 − 1))) |
| 10 | disjsn 4711 | . . . 4 ⊢ (((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (𝑀...(𝑁 − 1))) | |
| 11 | 9, 10 | sylibr 234 | . . 3 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
| 12 | eluzel2 12883 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 14 | peano2zm 12660 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑀 − 1) ∈ ℤ) |
| 16 | 13 | zcnd 12723 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 17 | 16, 6 | npcand 11624 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
| 18 | 17 | fveq2d 6910 | . . . . . . 7 ⊢ (𝜑 → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
| 19 | 2, 18 | eleqtrrd 2844 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) |
| 20 | eluzp1m1 12904 | . . . . . 6 ⊢ (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) | |
| 21 | 15, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) |
| 22 | fzsuc2 13622 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
| 23 | 13, 21, 22 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
| 24 | 7 | oveq2d 7447 | . . . 4 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
| 25 | 7 | sneqd 4638 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
| 26 | 25 | uneq2d 4168 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
| 27 | 23, 24, 26 | 3eqtr3d 2785 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
| 28 | fzfid 14014 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
| 29 | fprodm1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
| 30 | 11, 27, 28, 29 | fprodsplit 16002 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴)) |
| 31 | fprodm1.3 | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
| 32 | 31 | eleq1d 2826 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
| 33 | 29 | ralrimiva 3146 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
| 34 | eluzfz2 13572 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
| 35 | 2, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
| 36 | 32, 33, 35 | rspcdva 3623 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 37 | 31 | prodsn 15998 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵) |
| 38 | 2, 36, 37 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵) |
| 39 | 38 | oveq2d 7447 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
| 40 | 30, 39 | eqtrd 2777 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 ∩ cin 3950 ∅c0 4333 {csn 4626 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 1c1 11156 + caddc 11158 · cmul 11160 − cmin 11492 ℤcz 12613 ℤ≥cuz 12878 ...cfz 13547 ∏cprod 15939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-prod 15940 |
| This theorem is referenced by: fprodp1 16005 fprodm1s 16006 risefacp1 16065 fallfacp1 16066 prmop1 17076 bcprod 35738 aks4d1p1 42077 |
| Copyright terms: Public domain | W3C validator |