![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodm1 | Structured version Visualization version GIF version |
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.) |
Ref | Expression |
---|---|
fprodm1.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fprodm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fprodm1.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fprodm1 | ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzp1nel 13581 | . . . . 5 ⊢ ¬ ((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) | |
2 | fprodm1.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
3 | eluzelz 12828 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
5 | 4 | zcnd 12663 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
6 | 1cnd 11205 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℂ) | |
7 | 5, 6 | npcand 11571 | . . . . . 6 ⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
8 | 7 | eleq1d 2810 | . . . . 5 ⊢ (𝜑 → (((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) ↔ 𝑁 ∈ (𝑀...(𝑁 − 1)))) |
9 | 1, 8 | mtbii 326 | . . . 4 ⊢ (𝜑 → ¬ 𝑁 ∈ (𝑀...(𝑁 − 1))) |
10 | disjsn 4707 | . . . 4 ⊢ (((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (𝑀...(𝑁 − 1))) | |
11 | 9, 10 | sylibr 233 | . . 3 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅) |
12 | eluzel2 12823 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
14 | peano2zm 12601 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑀 − 1) ∈ ℤ) |
16 | 13 | zcnd 12663 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
17 | 16, 6 | npcand 11571 | . . . . . . . 8 ⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
18 | 17 | fveq2d 6885 | . . . . . . 7 ⊢ (𝜑 → (ℤ≥‘((𝑀 − 1) + 1)) = (ℤ≥‘𝑀)) |
19 | 2, 18 | eleqtrrd 2828 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) |
20 | eluzp1m1 12844 | . . . . . 6 ⊢ (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) | |
21 | 15, 19, 20 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) |
22 | fzsuc2 13555 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ≥‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) | |
23 | 13, 21, 22 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)})) |
24 | 7 | oveq2d 7417 | . . . 4 ⊢ (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁)) |
25 | 7 | sneqd 4632 | . . . . 5 ⊢ (𝜑 → {((𝑁 − 1) + 1)} = {𝑁}) |
26 | 25 | uneq2d 4155 | . . . 4 ⊢ (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
27 | 23, 24, 26 | 3eqtr3d 2772 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁})) |
28 | fzfid 13934 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
29 | fprodm1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
30 | 11, 27, 28, 29 | fprodsplit 15906 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴)) |
31 | fprodm1.3 | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
32 | 31 | eleq1d 2810 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ)) |
33 | 29 | ralrimiva 3138 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ) |
34 | eluzfz2 13505 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) | |
35 | 2, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
36 | 32, 33, 35 | rspcdva 3605 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
37 | 31 | prodsn 15902 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵) |
38 | 2, 36, 37 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵) |
39 | 38 | oveq2d 7417 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
40 | 30, 39 | eqtrd 2764 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∪ cun 3938 ∩ cin 3939 ∅c0 4314 {csn 4620 ‘cfv 6533 (class class class)co 7401 ℂcc 11103 1c1 11106 + caddc 11108 · cmul 11110 − cmin 11440 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 ∏cprod 15845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-prod 15846 |
This theorem is referenced by: fprodp1 15909 fprodm1s 15910 risefacp1 15969 fallfacp1 15970 prmop1 16967 bcprod 35169 aks4d1p1 41400 |
Copyright terms: Public domain | W3C validator |