MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodm1 Structured version   Visualization version   GIF version

Theorem fprodm1 15940
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017.)
Hypotheses
Ref Expression
fprodm1.1 (𝜑𝑁 ∈ (ℤ𝑀))
fprodm1.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
fprodm1.3 (𝑘 = 𝑁𝐴 = 𝐵)
Assertion
Ref Expression
fprodm1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
Distinct variable groups:   𝐵,𝑘   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodm1
StepHypRef Expression
1 fzp1nel 13579 . . . . 5 ¬ ((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1))
2 fprodm1.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 12810 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
54zcnd 12646 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
6 1cnd 11176 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
75, 6npcand 11544 . . . . . 6 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
87eleq1d 2814 . . . . 5 (𝜑 → (((𝑁 − 1) + 1) ∈ (𝑀...(𝑁 − 1)) ↔ 𝑁 ∈ (𝑀...(𝑁 − 1))))
91, 8mtbii 326 . . . 4 (𝜑 → ¬ 𝑁 ∈ (𝑀...(𝑁 − 1)))
10 disjsn 4678 . . . 4 (((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (𝑀...(𝑁 − 1)))
119, 10sylibr 234 . . 3 (𝜑 → ((𝑀...(𝑁 − 1)) ∩ {𝑁}) = ∅)
12 eluzel2 12805 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
132, 12syl 17 . . . . 5 (𝜑𝑀 ∈ ℤ)
14 peano2zm 12583 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
1513, 14syl 17 . . . . . 6 (𝜑 → (𝑀 − 1) ∈ ℤ)
1613zcnd 12646 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
1716, 6npcand 11544 . . . . . . . 8 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
1817fveq2d 6865 . . . . . . 7 (𝜑 → (ℤ‘((𝑀 − 1) + 1)) = (ℤ𝑀))
192, 18eleqtrrd 2832 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘((𝑀 − 1) + 1)))
20 eluzp1m1 12826 . . . . . 6 (((𝑀 − 1) ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝑀 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
2115, 19, 20syl2anc 584 . . . . 5 (𝜑 → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
22 fzsuc2 13550 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))) → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
2313, 21, 22syl2anc 584 . . . 4 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}))
247oveq2d 7406 . . . 4 (𝜑 → (𝑀...((𝑁 − 1) + 1)) = (𝑀...𝑁))
257sneqd 4604 . . . . 5 (𝜑 → {((𝑁 − 1) + 1)} = {𝑁})
2625uneq2d 4134 . . . 4 (𝜑 → ((𝑀...(𝑁 − 1)) ∪ {((𝑁 − 1) + 1)}) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
2723, 24, 263eqtr3d 2773 . . 3 (𝜑 → (𝑀...𝑁) = ((𝑀...(𝑁 − 1)) ∪ {𝑁}))
28 fzfid 13945 . . 3 (𝜑 → (𝑀...𝑁) ∈ Fin)
29 fprodm1.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3011, 27, 28, 29fprodsplit 15939 . 2 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴))
31 fprodm1.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
3231eleq1d 2814 . . . . 5 (𝑘 = 𝑁 → (𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ))
3329ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)𝐴 ∈ ℂ)
34 eluzfz2 13500 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
352, 34syl 17 . . . . 5 (𝜑𝑁 ∈ (𝑀...𝑁))
3632, 33, 35rspcdva 3592 . . . 4 (𝜑𝐵 ∈ ℂ)
3731prodsn 15935 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵)
382, 36, 37syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {𝑁}𝐴 = 𝐵)
3938oveq2d 7406 . 2 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ∏𝑘 ∈ {𝑁}𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
4030, 39eqtrd 2765 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3915  cin 3916  c0 4299  {csn 4592  cfv 6514  (class class class)co 7390  cc 11073  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412  cz 12536  cuz 12800  ...cfz 13475  cprod 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877
This theorem is referenced by:  fprodp1  15942  fprodm1s  15943  risefacp1  16002  fallfacp1  16003  prmop1  17016  bcprod  35732  aks4d1p1  42071
  Copyright terms: Public domain W3C validator