Proof of Theorem sumsplit
Step | Hyp | Ref
| Expression |
1 | | sumsplit.4 |
. . 3
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝑍) |
2 | | sumsplit.7 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ ℂ) |
3 | 2 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 ∈ ℂ) |
4 | | sumsplit.1 |
. . . . . 6
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | 4 | eqimssi 3979 |
. . . . 5
⊢ 𝑍 ⊆
(ℤ≥‘𝑀) |
6 | 5 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑍 ⊆ (ℤ≥‘𝑀)) |
7 | 6 | orcd 870 |
. . 3
⊢ (𝜑 → (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) |
8 | | sumss2 15438 |
. . 3
⊢ ((((𝐴 ∪ 𝐵) ⊆ 𝑍 ∧ ∀𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0)) |
9 | 1, 3, 7, 8 | syl21anc 835 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0)) |
10 | | sumsplit.2 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
11 | | sumsplit.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐶, 0)) |
12 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) |
13 | 12 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 0) = 𝐶) |
14 | | elun1 4110 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 → 𝑘 ∈ (𝐴 ∪ 𝐵)) |
15 | 14, 2 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
16 | 13, 15 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 0) ∈ ℂ) |
17 | | iffalse 4468 |
. . . . . . . 8
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) = 0) |
18 | | 0cn 10967 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
19 | 17, 18 | eqeltrdi 2847 |
. . . . . . 7
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐶, 0) ∈ ℂ) |
20 | 19 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 0) ∈ ℂ) |
21 | 16, 20 | pm2.61dan 810 |
. . . . 5
⊢ (𝜑 → if(𝑘 ∈ 𝐴, 𝐶, 0) ∈ ℂ) |
22 | 21 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐶, 0) ∈ ℂ) |
23 | | sumsplit.6 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = if(𝑘 ∈ 𝐵, 𝐶, 0)) |
24 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, 𝐶, 0) = 𝐶) |
25 | 24 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 0) = 𝐶) |
26 | | elun2 4111 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐵 → 𝑘 ∈ (𝐴 ∪ 𝐵)) |
27 | 26, 2 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
28 | 25, 27 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 0) ∈ ℂ) |
29 | | iffalse 4468 |
. . . . . . . 8
⊢ (¬
𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, 𝐶, 0) = 0) |
30 | 29, 18 | eqeltrdi 2847 |
. . . . . . 7
⊢ (¬
𝑘 ∈ 𝐵 → if(𝑘 ∈ 𝐵, 𝐶, 0) ∈ ℂ) |
31 | 30 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝐵, 𝐶, 0) ∈ ℂ) |
32 | 28, 31 | pm2.61dan 810 |
. . . . 5
⊢ (𝜑 → if(𝑘 ∈ 𝐵, 𝐶, 0) ∈ ℂ) |
33 | 32 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐵, 𝐶, 0) ∈ ℂ) |
34 | | sumsplit.8 |
. . . 4
⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
35 | | sumsplit.9 |
. . . 4
⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |
36 | 4, 10, 11, 22, 23, 33, 34, 35 | isumadd 15479 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐶, 0) + Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐵, 𝐶, 0))) |
37 | 15 | addid1d 11175 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐶 + 0) = 𝐶) |
38 | | noel 4264 |
. . . . . . . . . . 11
⊢ ¬
𝑘 ∈
∅ |
39 | | sumsplit.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
40 | 39 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝐴 ∩ 𝐵) ↔ 𝑘 ∈ ∅)) |
41 | | elin 3903 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐴 ∩ 𝐵) ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) |
42 | 40, 41 | bitr3di 286 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵))) |
43 | 38, 42 | mtbii 326 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) |
44 | | imnan 400 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵) ↔ ¬ (𝑘 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) |
45 | 43, 44 | sylibr 233 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 ∈ 𝐵)) |
46 | 45 | imp 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐵) |
47 | 46, 29 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐵, 𝐶, 0) = 0) |
48 | 13, 47 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (𝐶 + 0)) |
49 | | iftrue 4465 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) → if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0) = 𝐶) |
50 | 14, 49 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0) = 𝐶) |
51 | 50 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0) = 𝐶) |
52 | 37, 48, 51 | 3eqtr4rd 2789 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0) = (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0))) |
53 | 32 | addid2d 11176 |
. . . . . . 7
⊢ (𝜑 → (0 + if(𝑘 ∈ 𝐵, 𝐶, 0)) = if(𝑘 ∈ 𝐵, 𝐶, 0)) |
54 | 53 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → (0 + if(𝑘 ∈ 𝐵, 𝐶, 0)) = if(𝑘 ∈ 𝐵, 𝐶, 0)) |
55 | 17 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐶, 0) = 0) |
56 | 55 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0)) = (0 + if(𝑘 ∈ 𝐵, 𝐶, 0))) |
57 | | elun 4083 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) |
58 | | biorf 934 |
. . . . . . . . 9
⊢ (¬
𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐵 ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵))) |
59 | 57, 58 | bitr4id 290 |
. . . . . . . 8
⊢ (¬
𝑘 ∈ 𝐴 → (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ 𝑘 ∈ 𝐵)) |
60 | 59 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ 𝑘 ∈ 𝐵)) |
61 | 60 | ifbid 4482 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0) = if(𝑘 ∈ 𝐵, 𝐶, 0)) |
62 | 54, 56, 61 | 3eqtr4rd 2789 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑘 ∈ 𝐴) → if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0) = (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0))) |
63 | 52, 62 | pm2.61dan 810 |
. . . 4
⊢ (𝜑 → if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0) = (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0))) |
64 | 63 | sumeq2sdv 15416 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0) = Σ𝑘 ∈ 𝑍 (if(𝑘 ∈ 𝐴, 𝐶, 0) + if(𝑘 ∈ 𝐵, 𝐶, 0))) |
65 | 1 | unssad 4121 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
66 | 15 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
67 | | sumss2 15438 |
. . . . 5
⊢ (((𝐴 ⊆ 𝑍 ∧ ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
68 | 65, 66, 7, 67 | syl21anc 835 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐶, 0)) |
69 | 1 | unssbd 4122 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ 𝑍) |
70 | 27 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
71 | | sumss2 15438 |
. . . . 5
⊢ (((𝐵 ⊆ 𝑍 ∧ ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐵, 𝐶, 0)) |
72 | 69, 70, 7, 71 | syl21anc 835 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐵, 𝐶, 0)) |
73 | 68, 72 | oveq12d 7293 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶) = (Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐶, 0) + Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐵, 𝐶, 0))) |
74 | 36, 64, 73 | 3eqtr4rd 2789 |
. 2
⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶) = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ (𝐴 ∪ 𝐵), 𝐶, 0)) |
75 | 9, 74 | eqtr4d 2781 |
1
⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ 𝐵 𝐶)) |