MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsplit Structured version   Visualization version   GIF version

Theorem sumsplit 15693
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1 𝑍 = (ℤ𝑀)
sumsplit.2 (𝜑𝑀 ∈ ℤ)
sumsplit.3 (𝜑 → (𝐴𝐵) = ∅)
sumsplit.4 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
sumsplit.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
sumsplit.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
sumsplit.7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
sumsplit.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
sumsplit.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
sumsplit (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumsplit
StepHypRef Expression
1 sumsplit.4 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
2 sumsplit.7 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
32ralrimiva 3121 . . 3 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
4 sumsplit.1 . . . . . 6 𝑍 = (ℤ𝑀)
54eqimssi 3998 . . . . 5 𝑍 ⊆ (ℤ𝑀)
65a1i 11 . . . 4 (𝜑𝑍 ⊆ (ℤ𝑀))
76orcd 873 . . 3 (𝜑 → (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin))
8 sumss2 15651 . . 3 ((((𝐴𝐵) ⊆ 𝑍 ∧ ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
91, 3, 7, 8syl21anc 837 . 2 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
10 sumsplit.2 . . . 4 (𝜑𝑀 ∈ ℤ)
11 sumsplit.5 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
12 iftrue 4484 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
1312adantl 481 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
14 elun1 4135 . . . . . . . 8 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
1514, 2sylan2 593 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1613, 15eqeltrd 2828 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
17 iffalse 4487 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
18 0cn 11126 . . . . . . . 8 0 ∈ ℂ
1917, 18eqeltrdi 2836 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2019adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2116, 20pm2.61dan 812 . . . . 5 (𝜑 → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2221adantr 480 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
23 sumsplit.6 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
24 iftrue 4484 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
2524adantl 481 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
26 elun2 4136 . . . . . . . 8 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
2726, 2sylan2 593 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2825, 27eqeltrd 2828 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
29 iffalse 4487 . . . . . . . 8 𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 0)
3029, 18eqeltrdi 2836 . . . . . . 7 𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3130adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3228, 31pm2.61dan 812 . . . . 5 (𝜑 → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3332adantr 480 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
34 sumsplit.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
35 sumsplit.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
364, 10, 11, 22, 23, 33, 34, 35isumadd 15692 . . 3 (𝜑 → Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
3715addridd 11334 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
38 noel 4291 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
39 sumsplit.3 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
4039eleq2d 2814 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
41 elin 3921 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
4240, 41bitr3di 286 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
4338, 42mtbii 326 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
44 imnan 399 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
4543, 44sylibr 234 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4645imp 406 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4746, 29syl 17 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
4813, 47oveq12d 7371 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
49 iftrue 4484 . . . . . . . 8 (𝑘 ∈ (𝐴𝐵) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5014, 49syl 17 . . . . . . 7 (𝑘𝐴 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5150adantl 481 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5237, 48, 513eqtr4rd 2775 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5332addlidd 11335 . . . . . . 7 (𝜑 → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
5453adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
5517adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 0)
5655oveq1d 7368 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
57 elun 4106 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
58 biorf 936 . . . . . . . . 9 𝑘𝐴 → (𝑘𝐵 ↔ (𝑘𝐴𝑘𝐵)))
5957, 58bitr4id 290 . . . . . . . 8 𝑘𝐴 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6059adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6160ifbid 4502 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6254, 56, 613eqtr4rd 2775 . . . . 5 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
6352, 62pm2.61dan 812 . . . 4 (𝜑 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
6463sumeq2sdv 15628 . . 3 (𝜑 → Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
651unssad 4146 . . . . 5 (𝜑𝐴𝑍)
6615ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
67 sumss2 15651 . . . . 5 (((𝐴𝑍 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
6865, 66, 7, 67syl21anc 837 . . . 4 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
691unssbd 4147 . . . . 5 (𝜑𝐵𝑍)
7027ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
71 sumss2 15651 . . . . 5 (((𝐵𝑍 ∧ ∀𝑘𝐵 𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
7269, 70, 7, 71syl21anc 837 . . . 4 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
7368, 72oveq12d 7371 . . 3 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
7436, 64, 733eqtr4rd 2775 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
759, 74eqtr4d 2767 1 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cun 3903  cin 3904  wss 3905  c0 4286  ifcif 4478  dom cdm 5623  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028   + caddc 11031  cz 12489  cuz 12753  seqcseq 13926  cli 15409  Σcsu 15611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator