MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsplit Structured version   Visualization version   GIF version

Theorem sumsplit 15125
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
sumsplit.1 𝑍 = (ℤ𝑀)
sumsplit.2 (𝜑𝑀 ∈ ℤ)
sumsplit.3 (𝜑 → (𝐴𝐵) = ∅)
sumsplit.4 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
sumsplit.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
sumsplit.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
sumsplit.7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
sumsplit.8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
sumsplit.9 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
sumsplit (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem sumsplit
StepHypRef Expression
1 sumsplit.4 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑍)
2 sumsplit.7 . . . 4 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ ℂ)
32ralrimiva 3177 . . 3 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ)
4 sumsplit.1 . . . . . 6 𝑍 = (ℤ𝑀)
54eqimssi 4011 . . . . 5 𝑍 ⊆ (ℤ𝑀)
65a1i 11 . . . 4 (𝜑𝑍 ⊆ (ℤ𝑀))
76orcd 870 . . 3 (𝜑 → (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin))
8 sumss2 15085 . . 3 ((((𝐴𝐵) ⊆ 𝑍 ∧ ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
91, 3, 7, 8syl21anc 836 . 2 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
10 sumsplit.2 . . . 4 (𝜑𝑀 ∈ ℤ)
11 sumsplit.5 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐶, 0))
12 iftrue 4456 . . . . . . . 8 (𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 𝐶)
1312adantl 485 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 𝐶)
14 elun1 4138 . . . . . . . 8 (𝑘𝐴𝑘 ∈ (𝐴𝐵))
1514, 2sylan2 595 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1613, 15eqeltrd 2916 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
17 iffalse 4459 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) = 0)
18 0cn 10633 . . . . . . . 8 0 ∈ ℂ
1917, 18eqeltrdi 2924 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2019adantl 485 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2116, 20pm2.61dan 812 . . . . 5 (𝜑 → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
2221adantr 484 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐴, 𝐶, 0) ∈ ℂ)
23 sumsplit.6 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = if(𝑘𝐵, 𝐶, 0))
24 iftrue 4456 . . . . . . . 8 (𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 𝐶)
2524adantl 485 . . . . . . 7 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) = 𝐶)
26 elun2 4139 . . . . . . . 8 (𝑘𝐵𝑘 ∈ (𝐴𝐵))
2726, 2sylan2 595 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
2825, 27eqeltrd 2916 . . . . . 6 ((𝜑𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
29 iffalse 4459 . . . . . . . 8 𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) = 0)
3029, 18eqeltrdi 2924 . . . . . . 7 𝑘𝐵 → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3130adantl 485 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐵) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3228, 31pm2.61dan 812 . . . . 5 (𝜑 → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
3332adantr 484 . . . 4 ((𝜑𝑘𝑍) → if(𝑘𝐵, 𝐶, 0) ∈ ℂ)
34 sumsplit.8 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
35 sumsplit.9 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
364, 10, 11, 22, 23, 33, 34, 35isumadd 15124 . . 3 (𝜑 → Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
3715addid1d 10840 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶 + 0) = 𝐶)
38 noel 4280 . . . . . . . . . . 11 ¬ 𝑘 ∈ ∅
39 sumsplit.3 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐵) = ∅)
4039eleq2d 2901 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘 ∈ ∅))
41 elin 3935 . . . . . . . . . . . 12 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
4240, 41bitr3di 289 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ ∅ ↔ (𝑘𝐴𝑘𝐵)))
4338, 42mtbii 329 . . . . . . . . . 10 (𝜑 → ¬ (𝑘𝐴𝑘𝐵))
44 imnan 403 . . . . . . . . . 10 ((𝑘𝐴 → ¬ 𝑘𝐵) ↔ ¬ (𝑘𝐴𝑘𝐵))
4543, 44sylibr 237 . . . . . . . . 9 (𝜑 → (𝑘𝐴 → ¬ 𝑘𝐵))
4645imp 410 . . . . . . . 8 ((𝜑𝑘𝐴) → ¬ 𝑘𝐵)
4746, 29syl 17 . . . . . . 7 ((𝜑𝑘𝐴) → if(𝑘𝐵, 𝐶, 0) = 0)
4813, 47oveq12d 7169 . . . . . 6 ((𝜑𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (𝐶 + 0))
49 iftrue 4456 . . . . . . . 8 (𝑘 ∈ (𝐴𝐵) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5014, 49syl 17 . . . . . . 7 (𝑘𝐴 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5150adantl 485 . . . . . 6 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = 𝐶)
5237, 48, 513eqtr4rd 2870 . . . . 5 ((𝜑𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
5332addid2d 10841 . . . . . . 7 (𝜑 → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
5453adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → (0 + if(𝑘𝐵, 𝐶, 0)) = if(𝑘𝐵, 𝐶, 0))
5517adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘𝐴, 𝐶, 0) = 0)
5655oveq1d 7166 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)) = (0 + if(𝑘𝐵, 𝐶, 0)))
57 biorf 934 . . . . . . . . 9 𝑘𝐴 → (𝑘𝐵 ↔ (𝑘𝐴𝑘𝐵)))
58 elun 4111 . . . . . . . . 9 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
5957, 58syl6rbbr 293 . . . . . . . 8 𝑘𝐴 → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6059adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ 𝑘𝐴) → (𝑘 ∈ (𝐴𝐵) ↔ 𝑘𝐵))
6160ifbid 4472 . . . . . 6 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = if(𝑘𝐵, 𝐶, 0))
6254, 56, 613eqtr4rd 2870 . . . . 5 ((𝜑 ∧ ¬ 𝑘𝐴) → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
6352, 62pm2.61dan 812 . . . 4 (𝜑 → if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
6463sumeq2sdv 15063 . . 3 (𝜑 → Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0) = Σ𝑘𝑍 (if(𝑘𝐴, 𝐶, 0) + if(𝑘𝐵, 𝐶, 0)))
651unssad 4149 . . . . 5 (𝜑𝐴𝑍)
6615ralrimiva 3177 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
67 sumss2 15085 . . . . 5 (((𝐴𝑍 ∧ ∀𝑘𝐴 𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
6865, 66, 7, 67syl21anc 836 . . . 4 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0))
691unssbd 4150 . . . . 5 (𝜑𝐵𝑍)
7027ralrimiva 3177 . . . . 5 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
71 sumss2 15085 . . . . 5 (((𝐵𝑍 ∧ ∀𝑘𝐵 𝐶 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
7269, 70, 7, 71syl21anc 836 . . . 4 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0))
7368, 72oveq12d 7169 . . 3 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = (Σ𝑘𝑍 if(𝑘𝐴, 𝐶, 0) + Σ𝑘𝑍 if(𝑘𝐵, 𝐶, 0)))
7436, 64, 733eqtr4rd 2870 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶) = Σ𝑘𝑍 if(𝑘 ∈ (𝐴𝐵), 𝐶, 0))
759, 74eqtr4d 2862 1 (𝜑 → Σ𝑘 ∈ (𝐴𝐵)𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2115  wral 3133  cun 3917  cin 3918  wss 3919  c0 4276  ifcif 4450  dom cdm 5543  cfv 6345  (class class class)co 7151  Fincfn 8507  cc 10535  0cc0 10537   + caddc 10540  cz 11980  cuz 12242  seqcseq 13375  cli 14843  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-inf2 9103  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12897  df-fzo 13040  df-seq 13376  df-exp 13437  df-hash 13698  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator