| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > geoisum1c | Structured version Visualization version GIF version | ||
| Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| geoisum1c | ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ) | |
| 3 | ax-1cn 11126 | . . . 4 ⊢ 1 ∈ ℂ | |
| 4 | subcl 11420 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (1 − 𝑅) ∈ ℂ) | |
| 5 | 3, 2, 4 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ) |
| 6 | simp3 1138 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1) | |
| 7 | 1re 11174 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 8 | 7 | ltnri 11283 | . . . . . . 7 ⊢ ¬ 1 < 1 |
| 9 | abs1 15263 | . . . . . . . . 9 ⊢ (abs‘1) = 1 | |
| 10 | fveq2 6858 | . . . . . . . . 9 ⊢ (1 = 𝑅 → (abs‘1) = (abs‘𝑅)) | |
| 11 | 9, 10 | eqtr3id 2778 | . . . . . . . 8 ⊢ (1 = 𝑅 → 1 = (abs‘𝑅)) |
| 12 | 11 | breq1d 5117 | . . . . . . 7 ⊢ (1 = 𝑅 → (1 < 1 ↔ (abs‘𝑅) < 1)) |
| 13 | 8, 12 | mtbii 326 | . . . . . 6 ⊢ (1 = 𝑅 → ¬ (abs‘𝑅) < 1) |
| 14 | 13 | necon2ai 2954 | . . . . 5 ⊢ ((abs‘𝑅) < 1 → 1 ≠ 𝑅) |
| 15 | 6, 14 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ≠ 𝑅) |
| 16 | subeq0 11448 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) = 0 ↔ 1 = 𝑅)) | |
| 17 | 16 | necon3bid 2969 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅)) |
| 18 | 3, 2, 17 | sylancr 587 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅)) |
| 19 | 15, 18 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ≠ 0) |
| 20 | 1, 2, 5, 19 | divassd 11993 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅)))) |
| 21 | geoisum1 15845 | . . . 4 ⊢ ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅↑𝑘) = (𝑅 / (1 − 𝑅))) | |
| 22 | 21 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅↑𝑘) = (𝑅 / (1 − 𝑅))) |
| 23 | 22 | oveq2d 7403 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅↑𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅)))) |
| 24 | nnuz 12836 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
| 25 | 1zzd 12564 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ) | |
| 26 | oveq2 7395 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝑅↑𝑛) = (𝑅↑𝑘)) | |
| 27 | eqid 2729 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (𝑅↑𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅↑𝑛)) | |
| 28 | ovex 7420 | . . . . 5 ⊢ (𝑅↑𝑘) ∈ V | |
| 29 | 26, 27, 28 | fvmpt 6968 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
| 30 | 29 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
| 31 | nnnn0 12449 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 32 | expcl 14044 | . . . 4 ⊢ ((𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑅↑𝑘) ∈ ℂ) | |
| 33 | 2, 31, 32 | syl2an 596 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅↑𝑘) ∈ ℂ) |
| 34 | 1nn0 12458 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0) |
| 36 | elnnuz 12837 | . . . . . 6 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
| 37 | 36, 30 | sylan2br 595 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
| 38 | 2, 6, 35, 37 | geolim2 15837 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅))) |
| 39 | seqex 13968 | . . . . 5 ⊢ seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ V | |
| 40 | ovex 7420 | . . . . 5 ⊢ ((𝑅↑1) / (1 − 𝑅)) ∈ V | |
| 41 | 39, 40 | breldm 5872 | . . . 4 ⊢ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ dom ⇝ ) |
| 42 | 38, 41 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ dom ⇝ ) |
| 43 | 24, 25, 30, 33, 42, 1 | isummulc2 15728 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅↑𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘))) |
| 44 | 20, 23, 43 | 3eqtr2rd 2771 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 < clt 11208 − cmin 11405 / cdiv 11835 ℕcn 12186 ℕ0cn0 12442 ℤ≥cuz 12793 seqcseq 13966 ↑cexp 14026 abscabs 15200 ⇝ cli 15450 Σcsu 15652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 |
| This theorem is referenced by: 0.999... 15847 |
| Copyright terms: Public domain | W3C validator |