MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisum1c Structured version   Visualization version   GIF version

Theorem geoisum1c 15228
Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1c ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Distinct variable groups:   𝐴,𝑘   𝑅,𝑘

Proof of Theorem geoisum1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simp1 1130 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ)
2 simp2 1131 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ)
3 ax-1cn 10587 . . . 4 1 ∈ ℂ
4 subcl 10877 . . . 4 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (1 − 𝑅) ∈ ℂ)
53, 2, 4sylancr 587 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ)
6 simp3 1132 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1)
7 1re 10633 . . . . . . . 8 1 ∈ ℝ
87ltnri 10741 . . . . . . 7 ¬ 1 < 1
9 abs1 14650 . . . . . . . . 9 (abs‘1) = 1
10 fveq2 6666 . . . . . . . . 9 (1 = 𝑅 → (abs‘1) = (abs‘𝑅))
119, 10syl5eqr 2874 . . . . . . . 8 (1 = 𝑅 → 1 = (abs‘𝑅))
1211breq1d 5072 . . . . . . 7 (1 = 𝑅 → (1 < 1 ↔ (abs‘𝑅) < 1))
138, 12mtbii 327 . . . . . 6 (1 = 𝑅 → ¬ (abs‘𝑅) < 1)
1413necon2ai 3049 . . . . 5 ((abs‘𝑅) < 1 → 1 ≠ 𝑅)
156, 14syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ≠ 𝑅)
16 subeq0 10904 . . . . . 6 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) = 0 ↔ 1 = 𝑅))
1716necon3bid 3064 . . . . 5 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
183, 2, 17sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
1915, 18mpbird 258 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ≠ 0)
201, 2, 5, 19divassd 11443 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅))))
21 geoisum1 15227 . . . 4 ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
22213adant1 1124 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
2322oveq2d 7167 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅))))
24 nnuz 12273 . . 3 ℕ = (ℤ‘1)
25 1zzd 12005 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ)
26 oveq2 7159 . . . . 5 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
27 eqid 2825 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑅𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅𝑛))
28 ovex 7184 . . . . 5 (𝑅𝑘) ∈ V
2926, 27, 28fvmpt 6764 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
3029adantl 482 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
31 nnnn0 11896 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
32 expcl 13440 . . . 4 ((𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ ℂ)
332, 31, 32syl2an 595 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅𝑘) ∈ ℂ)
34 1nn0 11905 . . . . . 6 1 ∈ ℕ0
3534a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0)
36 elnnuz 12274 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3736, 30sylan2br 594 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
382, 6, 35, 37geolim2 15219 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)))
39 seqex 13364 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ V
40 ovex 7184 . . . . 5 ((𝑅↑1) / (1 − 𝑅)) ∈ V
4139, 40breldm 5775 . . . 4 (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4238, 41syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4324, 25, 30, 33, 42, 1isummulc2 15109 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)))
4420, 23, 433eqtr2rd 2867 1 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020   class class class wbr 5062  cmpt 5142  dom cdm 5553  cfv 6351  (class class class)co 7151  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cmin 10862   / cdiv 11289  cn 11630  0cn0 11889  cuz 12235  seqcseq 13362  cexp 13422  abscabs 14586  cli 14834  Σcsu 15035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036
This theorem is referenced by:  0.999...  15229
  Copyright terms: Public domain W3C validator