MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisum1c Structured version   Visualization version   GIF version

Theorem geoisum1c 15321
Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1c ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Distinct variable groups:   𝐴,𝑘   𝑅,𝑘

Proof of Theorem geoisum1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ)
2 simp2 1138 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ)
3 ax-1cn 10666 . . . 4 1 ∈ ℂ
4 subcl 10956 . . . 4 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (1 − 𝑅) ∈ ℂ)
53, 2, 4sylancr 590 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ)
6 simp3 1139 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1)
7 1re 10712 . . . . . . . 8 1 ∈ ℝ
87ltnri 10820 . . . . . . 7 ¬ 1 < 1
9 abs1 14740 . . . . . . . . 9 (abs‘1) = 1
10 fveq2 6668 . . . . . . . . 9 (1 = 𝑅 → (abs‘1) = (abs‘𝑅))
119, 10eqtr3id 2787 . . . . . . . 8 (1 = 𝑅 → 1 = (abs‘𝑅))
1211breq1d 5037 . . . . . . 7 (1 = 𝑅 → (1 < 1 ↔ (abs‘𝑅) < 1))
138, 12mtbii 329 . . . . . 6 (1 = 𝑅 → ¬ (abs‘𝑅) < 1)
1413necon2ai 2963 . . . . 5 ((abs‘𝑅) < 1 → 1 ≠ 𝑅)
156, 14syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ≠ 𝑅)
16 subeq0 10983 . . . . . 6 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) = 0 ↔ 1 = 𝑅))
1716necon3bid 2978 . . . . 5 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
183, 2, 17sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
1915, 18mpbird 260 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ≠ 0)
201, 2, 5, 19divassd 11522 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅))))
21 geoisum1 15320 . . . 4 ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
22213adant1 1131 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
2322oveq2d 7180 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅))))
24 nnuz 12356 . . 3 ℕ = (ℤ‘1)
25 1zzd 12087 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ)
26 oveq2 7172 . . . . 5 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
27 eqid 2738 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑅𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅𝑛))
28 ovex 7197 . . . . 5 (𝑅𝑘) ∈ V
2926, 27, 28fvmpt 6769 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
3029adantl 485 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
31 nnnn0 11976 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
32 expcl 13532 . . . 4 ((𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ ℂ)
332, 31, 32syl2an 599 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅𝑘) ∈ ℂ)
34 1nn0 11985 . . . . . 6 1 ∈ ℕ0
3534a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0)
36 elnnuz 12357 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3736, 30sylan2br 598 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
382, 6, 35, 37geolim2 15312 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)))
39 seqex 13455 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ V
40 ovex 7197 . . . . 5 ((𝑅↑1) / (1 − 𝑅)) ∈ V
4139, 40breldm 5745 . . . 4 (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4238, 41syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4324, 25, 30, 33, 42, 1isummulc2 15203 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)))
4420, 23, 433eqtr2rd 2780 1 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934   class class class wbr 5027  cmpt 5107  dom cdm 5519  cfv 6333  (class class class)co 7164  cc 10606  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613   < clt 10746  cmin 10941   / cdiv 11368  cn 11709  0cn0 11969  cuz 12317  seqcseq 13453  cexp 13514  abscabs 14676  cli 14924  Σcsu 15128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-inf 8973  df-oi 9040  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-rp 12466  df-fz 12975  df-fzo 13118  df-fl 13246  df-seq 13454  df-exp 13515  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-rlim 14929  df-sum 15129
This theorem is referenced by:  0.999...  15322
  Copyright terms: Public domain W3C validator