MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisum1c Structured version   Visualization version   GIF version

Theorem geoisum1c 15520
Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1c ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Distinct variable groups:   𝐴,𝑘   𝑅,𝑘

Proof of Theorem geoisum1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ)
2 simp2 1135 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ)
3 ax-1cn 10860 . . . 4 1 ∈ ℂ
4 subcl 11150 . . . 4 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (1 − 𝑅) ∈ ℂ)
53, 2, 4sylancr 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ)
6 simp3 1136 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1)
7 1re 10906 . . . . . . . 8 1 ∈ ℝ
87ltnri 11014 . . . . . . 7 ¬ 1 < 1
9 abs1 14937 . . . . . . . . 9 (abs‘1) = 1
10 fveq2 6756 . . . . . . . . 9 (1 = 𝑅 → (abs‘1) = (abs‘𝑅))
119, 10eqtr3id 2793 . . . . . . . 8 (1 = 𝑅 → 1 = (abs‘𝑅))
1211breq1d 5080 . . . . . . 7 (1 = 𝑅 → (1 < 1 ↔ (abs‘𝑅) < 1))
138, 12mtbii 325 . . . . . 6 (1 = 𝑅 → ¬ (abs‘𝑅) < 1)
1413necon2ai 2972 . . . . 5 ((abs‘𝑅) < 1 → 1 ≠ 𝑅)
156, 14syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ≠ 𝑅)
16 subeq0 11177 . . . . . 6 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) = 0 ↔ 1 = 𝑅))
1716necon3bid 2987 . . . . 5 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
183, 2, 17sylancr 586 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
1915, 18mpbird 256 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ≠ 0)
201, 2, 5, 19divassd 11716 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅))))
21 geoisum1 15519 . . . 4 ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
22213adant1 1128 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
2322oveq2d 7271 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅))))
24 nnuz 12550 . . 3 ℕ = (ℤ‘1)
25 1zzd 12281 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ)
26 oveq2 7263 . . . . 5 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
27 eqid 2738 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑅𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅𝑛))
28 ovex 7288 . . . . 5 (𝑅𝑘) ∈ V
2926, 27, 28fvmpt 6857 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
3029adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
31 nnnn0 12170 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
32 expcl 13728 . . . 4 ((𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ ℂ)
332, 31, 32syl2an 595 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅𝑘) ∈ ℂ)
34 1nn0 12179 . . . . . 6 1 ∈ ℕ0
3534a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0)
36 elnnuz 12551 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3736, 30sylan2br 594 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
382, 6, 35, 37geolim2 15511 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)))
39 seqex 13651 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ V
40 ovex 7288 . . . . 5 ((𝑅↑1) / (1 − 𝑅)) ∈ V
4139, 40breldm 5806 . . . 4 (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4238, 41syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4324, 25, 30, 33, 42, 1isummulc2 15402 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)))
4420, 23, 433eqtr2rd 2785 1 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cuz 12511  seqcseq 13649  cexp 13710  abscabs 14873  cli 15121  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326
This theorem is referenced by:  0.999...  15521
  Copyright terms: Public domain W3C validator