![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > geoisum1c | Structured version Visualization version GIF version |
Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geoisum1c | ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ) | |
2 | simp2 1136 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ) | |
3 | ax-1cn 11174 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | subcl 11466 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (1 − 𝑅) ∈ ℂ) | |
5 | 3, 2, 4 | sylancr 586 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ) |
6 | simp3 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1) | |
7 | 1re 11221 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
8 | 7 | ltnri 11330 | . . . . . . 7 ⊢ ¬ 1 < 1 |
9 | abs1 15251 | . . . . . . . . 9 ⊢ (abs‘1) = 1 | |
10 | fveq2 6891 | . . . . . . . . 9 ⊢ (1 = 𝑅 → (abs‘1) = (abs‘𝑅)) | |
11 | 9, 10 | eqtr3id 2785 | . . . . . . . 8 ⊢ (1 = 𝑅 → 1 = (abs‘𝑅)) |
12 | 11 | breq1d 5158 | . . . . . . 7 ⊢ (1 = 𝑅 → (1 < 1 ↔ (abs‘𝑅) < 1)) |
13 | 8, 12 | mtbii 326 | . . . . . 6 ⊢ (1 = 𝑅 → ¬ (abs‘𝑅) < 1) |
14 | 13 | necon2ai 2969 | . . . . 5 ⊢ ((abs‘𝑅) < 1 → 1 ≠ 𝑅) |
15 | 6, 14 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ≠ 𝑅) |
16 | subeq0 11493 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) = 0 ↔ 1 = 𝑅)) | |
17 | 16 | necon3bid 2984 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅)) |
18 | 3, 2, 17 | sylancr 586 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅)) |
19 | 15, 18 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ≠ 0) |
20 | 1, 2, 5, 19 | divassd 12032 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅)))) |
21 | geoisum1 15832 | . . . 4 ⊢ ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅↑𝑘) = (𝑅 / (1 − 𝑅))) | |
22 | 21 | 3adant1 1129 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅↑𝑘) = (𝑅 / (1 − 𝑅))) |
23 | 22 | oveq2d 7428 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅↑𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅)))) |
24 | nnuz 12872 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
25 | 1zzd 12600 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ) | |
26 | oveq2 7420 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝑅↑𝑛) = (𝑅↑𝑘)) | |
27 | eqid 2731 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (𝑅↑𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅↑𝑛)) | |
28 | ovex 7445 | . . . . 5 ⊢ (𝑅↑𝑘) ∈ V | |
29 | 26, 27, 28 | fvmpt 6998 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
30 | 29 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
31 | nnnn0 12486 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
32 | expcl 14052 | . . . 4 ⊢ ((𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑅↑𝑘) ∈ ℂ) | |
33 | 2, 31, 32 | syl2an 595 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅↑𝑘) ∈ ℂ) |
34 | 1nn0 12495 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0) |
36 | elnnuz 12873 | . . . . . 6 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
37 | 36, 30 | sylan2br 594 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
38 | 2, 6, 35, 37 | geolim2 15824 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅))) |
39 | seqex 13975 | . . . . 5 ⊢ seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ V | |
40 | ovex 7445 | . . . . 5 ⊢ ((𝑅↑1) / (1 − 𝑅)) ∈ V | |
41 | 39, 40 | breldm 5908 | . . . 4 ⊢ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ dom ⇝ ) |
42 | 38, 41 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ dom ⇝ ) |
43 | 24, 25, 30, 33, 42, 1 | isummulc2 15715 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅↑𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘))) |
44 | 20, 23, 43 | 3eqtr2rd 2778 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5676 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 0cc0 11116 1c1 11117 + caddc 11119 · cmul 11121 < clt 11255 − cmin 11451 / cdiv 11878 ℕcn 12219 ℕ0cn0 12479 ℤ≥cuz 12829 seqcseq 13973 ↑cexp 14034 abscabs 15188 ⇝ cli 15435 Σcsu 15639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 df-sum 15640 |
This theorem is referenced by: 0.999... 15834 |
Copyright terms: Public domain | W3C validator |