MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisum1c Structured version   Visualization version   GIF version

Theorem geoisum1c 15228
Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisum1c ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Distinct variable groups:   𝐴,𝑘   𝑅,𝑘

Proof of Theorem geoisum1c
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ)
2 simp2 1134 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ)
3 ax-1cn 10584 . . . 4 1 ∈ ℂ
4 subcl 10874 . . . 4 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (1 − 𝑅) ∈ ℂ)
53, 2, 4sylancr 590 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ)
6 simp3 1135 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1)
7 1re 10630 . . . . . . . 8 1 ∈ ℝ
87ltnri 10738 . . . . . . 7 ¬ 1 < 1
9 abs1 14649 . . . . . . . . 9 (abs‘1) = 1
10 fveq2 6645 . . . . . . . . 9 (1 = 𝑅 → (abs‘1) = (abs‘𝑅))
119, 10syl5eqr 2847 . . . . . . . 8 (1 = 𝑅 → 1 = (abs‘𝑅))
1211breq1d 5040 . . . . . . 7 (1 = 𝑅 → (1 < 1 ↔ (abs‘𝑅) < 1))
138, 12mtbii 329 . . . . . 6 (1 = 𝑅 → ¬ (abs‘𝑅) < 1)
1413necon2ai 3016 . . . . 5 ((abs‘𝑅) < 1 → 1 ≠ 𝑅)
156, 14syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ≠ 𝑅)
16 subeq0 10901 . . . . . 6 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) = 0 ↔ 1 = 𝑅))
1716necon3bid 3031 . . . . 5 ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
183, 2, 17sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅))
1915, 18mpbird 260 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ≠ 0)
201, 2, 5, 19divassd 11440 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅))))
21 geoisum1 15227 . . . 4 ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
22213adant1 1127 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅𝑘) = (𝑅 / (1 − 𝑅)))
2322oveq2d 7151 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅))))
24 nnuz 12269 . . 3 ℕ = (ℤ‘1)
25 1zzd 12001 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ)
26 oveq2 7143 . . . . 5 (𝑛 = 𝑘 → (𝑅𝑛) = (𝑅𝑘))
27 eqid 2798 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑅𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅𝑛))
28 ovex 7168 . . . . 5 (𝑅𝑘) ∈ V
2926, 27, 28fvmpt 6745 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
3029adantl 485 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
31 nnnn0 11892 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
32 expcl 13443 . . . 4 ((𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ ℂ)
332, 31, 32syl2an 598 . . 3 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅𝑘) ∈ ℂ)
34 1nn0 11901 . . . . . 6 1 ∈ ℕ0
3534a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0)
36 elnnuz 12270 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
3736, 30sylan2br 597 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅𝑛))‘𝑘) = (𝑅𝑘))
382, 6, 35, 37geolim2 15219 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)))
39 seqex 13366 . . . . 5 seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ V
40 ovex 7168 . . . . 5 ((𝑅↑1) / (1 − 𝑅)) ∈ V
4139, 40breldm 5741 . . . 4 (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4238, 41syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅𝑛))) ∈ dom ⇝ )
4324, 25, 30, 33, 42, 1isummulc2 15109 . 2 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)))
4420, 23, 433eqtr2rd 2840 1 ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cmpt 5110  dom cdm 5519  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  cuz 12231  seqcseq 13364  cexp 13425  abscabs 14585  cli 14833  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035
This theorem is referenced by:  0.999...  15229
  Copyright terms: Public domain W3C validator