![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemi1 | Structured version Visualization version GIF version |
Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
Ref | Expression |
---|---|
ballotlemi1 | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11220 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
2 | 1re 11218 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
3 | 1, 2 | resubcli 11526 | . . . . . 6 ⊢ (0 − 1) ∈ ℝ |
4 | 0lt1 11740 | . . . . . . 7 ⊢ 0 < 1 | |
5 | ltsub23 11698 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 1) < 0 ↔ (0 − 0) < 1)) | |
6 | 1, 2, 1, 5 | mp3an 1459 | . . . . . . . 8 ⊢ ((0 − 1) < 0 ↔ (0 − 0) < 1) |
7 | 0m0e0 12336 | . . . . . . . . 9 ⊢ (0 − 0) = 0 | |
8 | 7 | breq1i 5154 | . . . . . . . 8 ⊢ ((0 − 0) < 1 ↔ 0 < 1) |
9 | 6, 8 | bitr2i 275 | . . . . . . 7 ⊢ (0 < 1 ↔ (0 − 1) < 0) |
10 | 4, 9 | mpbi 229 | . . . . . 6 ⊢ (0 − 1) < 0 |
11 | 3, 10 | gtneii 11330 | . . . . 5 ⊢ 0 ≠ (0 − 1) |
12 | 11 | nesymi 2996 | . . . 4 ⊢ ¬ (0 − 1) = 0 |
13 | ballotth.m | . . . . . . . . 9 ⊢ 𝑀 ∈ ℕ | |
14 | ballotth.n | . . . . . . . . 9 ⊢ 𝑁 ∈ ℕ | |
15 | ballotth.o | . . . . . . . . 9 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
16 | ballotth.p | . . . . . . . . 9 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
17 | ballotth.f | . . . . . . . . 9 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
18 | eldifi 4125 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
19 | 1nn 12227 | . . . . . . . . . 10 ⊢ 1 ∈ ℕ | |
20 | 19 | a1i 11 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℕ) |
21 | 13, 14, 15, 16, 17, 18, 20 | ballotlemfp1 33788 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1)))) |
22 | 21 | simpld 493 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1))) |
23 | 22 | imp 405 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) |
24 | 1m1e0 12288 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
25 | 24 | fveq2i 6893 | . . . . . . . 8 ⊢ ((𝐹‘𝐶)‘(1 − 1)) = ((𝐹‘𝐶)‘0) |
26 | 25 | oveq1i 7421 | . . . . . . 7 ⊢ (((𝐹‘𝐶)‘(1 − 1)) − 1) = (((𝐹‘𝐶)‘0) − 1) |
27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘(1 − 1)) − 1) = (((𝐹‘𝐶)‘0) − 1)) |
28 | 13, 14, 15, 16, 17 | ballotlemfval0 33792 | . . . . . . . . 9 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
29 | 18, 28 | syl 17 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘0) = 0) |
30 | 29 | adantr 479 | . . . . . . 7 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘0) = 0) |
31 | 30 | oveq1d 7426 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘0) − 1) = (0 − 1)) |
32 | 23, 27, 31 | 3eqtrrd 2775 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹‘𝐶)‘1)) |
33 | 32 | eqeq1d 2732 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((0 − 1) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
34 | 12, 33 | mtbii 325 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ ((𝐹‘𝐶)‘1) = 0) |
35 | ballotth.e | . . . . . . 7 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
36 | ballotth.mgtn | . . . . . . 7 ⊢ 𝑁 < 𝑀 | |
37 | ballotth.i | . . . . . . 7 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
38 | 13, 14, 15, 16, 17, 35, 36, 37 | ballotlemiex 33798 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
39 | 38 | simprd 494 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
40 | 39 | ad2antrr 722 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
41 | fveqeq2 6899 | . . . . 5 ⊢ ((𝐼‘𝐶) = 1 → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) | |
42 | 41 | adantl 480 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
43 | 40, 42 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘1) = 0) |
44 | 34, 43 | mtand 812 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ (𝐼‘𝐶) = 1) |
45 | 44 | neqned 2945 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 {crab 3430 ∖ cdif 3944 ∩ cin 3946 𝒫 cpw 4601 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6542 (class class class)co 7411 infcinf 9438 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 < clt 11252 − cmin 11448 / cdiv 11875 ℕcn 12216 ℤcz 12562 ...cfz 13488 ♯chash 14294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-hash 14295 |
This theorem is referenced by: ballotlemic 33803 |
Copyright terms: Public domain | W3C validator |