Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemi1 | Structured version Visualization version GIF version |
Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
Ref | Expression |
---|---|
ballotlemi1 | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10908 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
2 | 1re 10906 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
3 | 1, 2 | resubcli 11213 | . . . . . 6 ⊢ (0 − 1) ∈ ℝ |
4 | 0lt1 11427 | . . . . . . 7 ⊢ 0 < 1 | |
5 | ltsub23 11385 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 1) < 0 ↔ (0 − 0) < 1)) | |
6 | 1, 2, 1, 5 | mp3an 1459 | . . . . . . . 8 ⊢ ((0 − 1) < 0 ↔ (0 − 0) < 1) |
7 | 0m0e0 12023 | . . . . . . . . 9 ⊢ (0 − 0) = 0 | |
8 | 7 | breq1i 5077 | . . . . . . . 8 ⊢ ((0 − 0) < 1 ↔ 0 < 1) |
9 | 6, 8 | bitr2i 275 | . . . . . . 7 ⊢ (0 < 1 ↔ (0 − 1) < 0) |
10 | 4, 9 | mpbi 229 | . . . . . 6 ⊢ (0 − 1) < 0 |
11 | 3, 10 | gtneii 11017 | . . . . 5 ⊢ 0 ≠ (0 − 1) |
12 | 11 | nesymi 3000 | . . . 4 ⊢ ¬ (0 − 1) = 0 |
13 | ballotth.m | . . . . . . . . 9 ⊢ 𝑀 ∈ ℕ | |
14 | ballotth.n | . . . . . . . . 9 ⊢ 𝑁 ∈ ℕ | |
15 | ballotth.o | . . . . . . . . 9 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
16 | ballotth.p | . . . . . . . . 9 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
17 | ballotth.f | . . . . . . . . 9 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
18 | eldifi 4057 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
19 | 1nn 11914 | . . . . . . . . . 10 ⊢ 1 ∈ ℕ | |
20 | 19 | a1i 11 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℕ) |
21 | 13, 14, 15, 16, 17, 18, 20 | ballotlemfp1 32358 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1)))) |
22 | 21 | simpld 494 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1))) |
23 | 22 | imp 406 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) |
24 | 1m1e0 11975 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
25 | 24 | fveq2i 6759 | . . . . . . . 8 ⊢ ((𝐹‘𝐶)‘(1 − 1)) = ((𝐹‘𝐶)‘0) |
26 | 25 | oveq1i 7265 | . . . . . . 7 ⊢ (((𝐹‘𝐶)‘(1 − 1)) − 1) = (((𝐹‘𝐶)‘0) − 1) |
27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘(1 − 1)) − 1) = (((𝐹‘𝐶)‘0) − 1)) |
28 | 13, 14, 15, 16, 17 | ballotlemfval0 32362 | . . . . . . . . 9 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
29 | 18, 28 | syl 17 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘0) = 0) |
30 | 29 | adantr 480 | . . . . . . 7 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘0) = 0) |
31 | 30 | oveq1d 7270 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘0) − 1) = (0 − 1)) |
32 | 23, 27, 31 | 3eqtrrd 2783 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹‘𝐶)‘1)) |
33 | 32 | eqeq1d 2740 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((0 − 1) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
34 | 12, 33 | mtbii 325 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ ((𝐹‘𝐶)‘1) = 0) |
35 | ballotth.e | . . . . . . 7 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
36 | ballotth.mgtn | . . . . . . 7 ⊢ 𝑁 < 𝑀 | |
37 | ballotth.i | . . . . . . 7 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
38 | 13, 14, 15, 16, 17, 35, 36, 37 | ballotlemiex 32368 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
39 | 38 | simprd 495 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
40 | 39 | ad2antrr 722 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
41 | fveqeq2 6765 | . . . . 5 ⊢ ((𝐼‘𝐶) = 1 → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) | |
42 | 41 | adantl 481 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
43 | 40, 42 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘1) = 0) |
44 | 34, 43 | mtand 812 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ (𝐼‘𝐶) = 1) |
45 | 44 | neqned 2949 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ∖ cdif 3880 ∩ cin 3882 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 infcinf 9130 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 − cmin 11135 / cdiv 11562 ℕcn 11903 ℤcz 12249 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: ballotlemic 32373 |
Copyright terms: Public domain | W3C validator |