Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemi1 Structured version   Visualization version   GIF version

Theorem ballotlemi1 32469
Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemi1 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemi1
StepHypRef Expression
1 0re 10977 . . . . . . 7 0 ∈ ℝ
2 1re 10975 . . . . . . 7 1 ∈ ℝ
31, 2resubcli 11283 . . . . . 6 (0 − 1) ∈ ℝ
4 0lt1 11497 . . . . . . 7 0 < 1
5 ltsub23 11455 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 1) < 0 ↔ (0 − 0) < 1))
61, 2, 1, 5mp3an 1460 . . . . . . . 8 ((0 − 1) < 0 ↔ (0 − 0) < 1)
7 0m0e0 12093 . . . . . . . . 9 (0 − 0) = 0
87breq1i 5081 . . . . . . . 8 ((0 − 0) < 1 ↔ 0 < 1)
96, 8bitr2i 275 . . . . . . 7 (0 < 1 ↔ (0 − 1) < 0)
104, 9mpbi 229 . . . . . 6 (0 − 1) < 0
113, 10gtneii 11087 . . . . 5 0 ≠ (0 − 1)
1211nesymi 3001 . . . 4 ¬ (0 − 1) = 0
13 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
14 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
15 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
16 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
17 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
18 eldifi 4061 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
19 1nn 11984 . . . . . . . . . 10 1 ∈ ℕ
2019a1i 11 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℕ)
2113, 14, 15, 16, 17, 18, 20ballotlemfp1 32458 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) + 1))))
2221simpld 495 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1)))
2322imp 407 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘1) = (((𝐹𝐶)‘(1 − 1)) − 1))
24 1m1e0 12045 . . . . . . . . 9 (1 − 1) = 0
2524fveq2i 6777 . . . . . . . 8 ((𝐹𝐶)‘(1 − 1)) = ((𝐹𝐶)‘0)
2625oveq1i 7285 . . . . . . 7 (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1)
2726a1i 11 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘(1 − 1)) − 1) = (((𝐹𝐶)‘0) − 1))
2813, 14, 15, 16, 17ballotlemfval0 32462 . . . . . . . . 9 (𝐶𝑂 → ((𝐹𝐶)‘0) = 0)
2918, 28syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘0) = 0)
3029adantr 481 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹𝐶)‘0) = 0)
3130oveq1d 7290 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹𝐶)‘0) − 1) = (0 − 1))
3223, 27, 313eqtrrd 2783 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹𝐶)‘1))
3332eqeq1d 2740 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ((0 − 1) = 0 ↔ ((𝐹𝐶)‘1) = 0))
3412, 33mtbii 326 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ ((𝐹𝐶)‘1) = 0)
35 ballotth.e . . . . . . 7 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
36 ballotth.mgtn . . . . . . 7 𝑁 < 𝑀
37 ballotth.i . . . . . . 7 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
3813, 14, 15, 16, 17, 35, 36, 37ballotlemiex 32468 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
3938simprd 496 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
4039ad2antrr 723 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → ((𝐹𝐶)‘(𝐼𝐶)) = 0)
41 fveqeq2 6783 . . . . 5 ((𝐼𝐶) = 1 → (((𝐹𝐶)‘(𝐼𝐶)) = 0 ↔ ((𝐹𝐶)‘1) = 0))
4241adantl 482 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → (((𝐹𝐶)‘(𝐼𝐶)) = 0 ↔ ((𝐹𝐶)‘1) = 0))
4340, 42mpbid 231 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼𝐶) = 1) → ((𝐹𝐶)‘1) = 0)
4434, 43mtand 813 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ (𝐼𝐶) = 1)
4544neqned 2950 1 ((𝐶 ∈ (𝑂𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼𝐶) ≠ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cdif 3884  cin 3886  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205   / cdiv 11632  cn 11973  cz 12319  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  ballotlemic  32473
  Copyright terms: Public domain W3C validator