Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemi1 | Structured version Visualization version GIF version |
Description: The first tie cannot be reached at the first pick. (Contributed by Thierry Arnoux, 12-Mar-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
Ref | Expression |
---|---|
ballotlemi1 | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10977 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
2 | 1re 10975 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
3 | 1, 2 | resubcli 11283 | . . . . . 6 ⊢ (0 − 1) ∈ ℝ |
4 | 0lt1 11497 | . . . . . . 7 ⊢ 0 < 1 | |
5 | ltsub23 11455 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 1) < 0 ↔ (0 − 0) < 1)) | |
6 | 1, 2, 1, 5 | mp3an 1460 | . . . . . . . 8 ⊢ ((0 − 1) < 0 ↔ (0 − 0) < 1) |
7 | 0m0e0 12093 | . . . . . . . . 9 ⊢ (0 − 0) = 0 | |
8 | 7 | breq1i 5081 | . . . . . . . 8 ⊢ ((0 − 0) < 1 ↔ 0 < 1) |
9 | 6, 8 | bitr2i 275 | . . . . . . 7 ⊢ (0 < 1 ↔ (0 − 1) < 0) |
10 | 4, 9 | mpbi 229 | . . . . . 6 ⊢ (0 − 1) < 0 |
11 | 3, 10 | gtneii 11087 | . . . . 5 ⊢ 0 ≠ (0 − 1) |
12 | 11 | nesymi 3001 | . . . 4 ⊢ ¬ (0 − 1) = 0 |
13 | ballotth.m | . . . . . . . . 9 ⊢ 𝑀 ∈ ℕ | |
14 | ballotth.n | . . . . . . . . 9 ⊢ 𝑁 ∈ ℕ | |
15 | ballotth.o | . . . . . . . . 9 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
16 | ballotth.p | . . . . . . . . 9 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
17 | ballotth.f | . . . . . . . . 9 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
18 | eldifi 4061 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
19 | 1nn 11984 | . . . . . . . . . 10 ⊢ 1 ∈ ℕ | |
20 | 19 | a1i 11 | . . . . . . . . 9 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℕ) |
21 | 13, 14, 15, 16, 17, 18, 20 | ballotlemfp1 32458 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) ∧ (1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) + 1)))) |
22 | 21 | simpld 495 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (¬ 1 ∈ 𝐶 → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1))) |
23 | 22 | imp 407 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘1) = (((𝐹‘𝐶)‘(1 − 1)) − 1)) |
24 | 1m1e0 12045 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
25 | 24 | fveq2i 6777 | . . . . . . . 8 ⊢ ((𝐹‘𝐶)‘(1 − 1)) = ((𝐹‘𝐶)‘0) |
26 | 25 | oveq1i 7285 | . . . . . . 7 ⊢ (((𝐹‘𝐶)‘(1 − 1)) − 1) = (((𝐹‘𝐶)‘0) − 1) |
27 | 26 | a1i 11 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘(1 − 1)) − 1) = (((𝐹‘𝐶)‘0) − 1)) |
28 | 13, 14, 15, 16, 17 | ballotlemfval0 32462 | . . . . . . . . 9 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘0) = 0) |
29 | 18, 28 | syl 17 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘0) = 0) |
30 | 29 | adantr 481 | . . . . . . 7 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((𝐹‘𝐶)‘0) = 0) |
31 | 30 | oveq1d 7290 | . . . . . 6 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (((𝐹‘𝐶)‘0) − 1) = (0 − 1)) |
32 | 23, 27, 31 | 3eqtrrd 2783 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (0 − 1) = ((𝐹‘𝐶)‘1)) |
33 | 32 | eqeq1d 2740 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ((0 − 1) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
34 | 12, 33 | mtbii 326 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ ((𝐹‘𝐶)‘1) = 0) |
35 | ballotth.e | . . . . . . 7 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
36 | ballotth.mgtn | . . . . . . 7 ⊢ 𝑁 < 𝑀 | |
37 | ballotth.i | . . . . . . 7 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
38 | 13, 14, 15, 16, 17, 35, 36, 37 | ballotlemiex 32468 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
39 | 38 | simprd 496 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
40 | 39 | ad2antrr 723 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0) |
41 | fveqeq2 6783 | . . . . 5 ⊢ ((𝐼‘𝐶) = 1 → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) | |
42 | 41 | adantl 482 | . . . 4 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → (((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0 ↔ ((𝐹‘𝐶)‘1) = 0)) |
43 | 40, 42 | mpbid 231 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) ∧ (𝐼‘𝐶) = 1) → ((𝐹‘𝐶)‘1) = 0) |
44 | 34, 43 | mtand 813 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → ¬ (𝐼‘𝐶) = 1) |
45 | 44 | neqned 2950 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ ¬ 1 ∈ 𝐶) → (𝐼‘𝐶) ≠ 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∩ cin 3886 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 infcinf 9200 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 − cmin 11205 / cdiv 11632 ℕcn 11973 ℤcz 12319 ...cfz 13239 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: ballotlemic 32473 |
Copyright terms: Public domain | W3C validator |