| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dgraa0p | Structured version Visualization version GIF version | ||
| Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| Ref | Expression |
|---|---|
| dgraa0p | ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA‘𝐴)) | |
| 2 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ)) | |
| 3 | dgrcl 26136 | . . . . . . . . 9 ⊢ (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0) |
| 5 | 4 | nn0red 12446 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ) |
| 6 | simpl1 1192 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸) | |
| 7 | dgraacl 43119 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℕ) |
| 9 | 8 | nnred 12143 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℝ) |
| 10 | 5, 9 | ltnled 11263 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA‘𝐴) ↔ ¬ (degAA‘𝐴) ≤ (deg‘𝑃))) |
| 11 | 1, 10 | mpbid 232 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA‘𝐴) ≤ (deg‘𝑃)) |
| 12 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ)) | |
| 13 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ≠ 0𝑝) | |
| 14 | simpl1 1192 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ 𝔸) | |
| 15 | aacn 26223 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ ℂ) |
| 17 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (𝑃‘𝐴) = 0) | |
| 18 | dgraaub 43121 | . . . . . . 7 ⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | |
| 19 | 12, 13, 16, 17, 18 | syl22anc 838 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) |
| 20 | 19 | expr 456 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃‘𝐴) = 0 → (degAA‘𝐴) ≤ (deg‘𝑃))) |
| 21 | 11, 20 | mtod 198 | . . . 4 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃‘𝐴) = 0) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃‘𝐴) = 0)) |
| 23 | 22 | necon4ad 2944 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 → 𝑃 = 0𝑝)) |
| 24 | 0pval 25570 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
| 25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝔸 → (0𝑝‘𝐴) = 0) |
| 26 | fveq1 6821 | . . . . 5 ⊢ (𝑃 = 0𝑝 → (𝑃‘𝐴) = (0𝑝‘𝐴)) | |
| 27 | 26 | eqeq1d 2731 | . . . 4 ⊢ (𝑃 = 0𝑝 → ((𝑃‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) |
| 28 | 25, 27 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) |
| 29 | 28 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) |
| 30 | 23, 29 | impbid 212 | 1 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 ℂcc 11007 0cc0 11009 < clt 11149 ≤ cle 11150 ℕcn 12128 ℕ0cn0 12384 ℚcq 12849 0𝑝c0p 25568 Polycply 26087 degcdgr 26090 𝔸caa 26220 degAAcdgraa 43113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-fz 13411 df-fzo 13558 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-0p 25569 df-ply 26091 df-coe 26093 df-dgr 26094 df-aa 26221 df-dgraa 43115 |
| This theorem is referenced by: mpaaeu 43123 |
| Copyright terms: Public domain | W3C validator |