Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraa0p Structured version   Visualization version   GIF version

Theorem dgraa0p 40971
Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgraa0p ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 ↔ 𝑃 = 0𝑝))

Proof of Theorem dgraa0p
StepHypRef Expression
1 simpl3 1192 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA𝐴))
2 simpl2 1191 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ))
3 dgrcl 25392 . . . . . . . . 9 (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0)
54nn0red 12294 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ)
6 simpl1 1190 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸)
7 dgraacl 40968 . . . . . . . . 9 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ ℕ)
86, 7syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA𝐴) ∈ ℕ)
98nnred 11988 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA𝐴) ∈ ℝ)
105, 9ltnled 11122 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA𝐴) ↔ ¬ (degAA𝐴) ≤ (deg‘𝑃)))
111, 10mpbid 231 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA𝐴) ≤ (deg‘𝑃))
12 simpl2 1191 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ))
13 simprl 768 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝑃 ≠ 0𝑝)
14 simpl1 1190 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ 𝔸)
15 aacn 25475 . . . . . . . 8 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ ℂ)
17 simprr 770 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → (𝑃𝐴) = 0)
18 dgraaub 40970 . . . . . . 7 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
1912, 13, 16, 17, 18syl22anc 836 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
2019expr 457 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃𝐴) = 0 → (degAA𝐴) ≤ (deg‘𝑃)))
2111, 20mtod 197 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃𝐴) = 0)
2221ex 413 . . 3 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃𝐴) = 0))
2322necon4ad 2964 . 2 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 → 𝑃 = 0𝑝))
24 0pval 24833 . . . . 5 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
2515, 24syl 17 . . . 4 (𝐴 ∈ 𝔸 → (0𝑝𝐴) = 0)
26 fveq1 6770 . . . . 5 (𝑃 = 0𝑝 → (𝑃𝐴) = (0𝑝𝐴))
2726eqeq1d 2742 . . . 4 (𝑃 = 0𝑝 → ((𝑃𝐴) = 0 ↔ (0𝑝𝐴) = 0))
2825, 27syl5ibrcom 246 . . 3 (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃𝐴) = 0))
29283ad2ant1 1132 . 2 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → (𝑃 = 0𝑝 → (𝑃𝐴) = 0))
3023, 29impbid 211 1 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 ↔ 𝑃 = 0𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  cc 10870  0cc0 10872   < clt 11010  cle 11011  cn 11973  0cn0 12233  cq 12687  0𝑝c0p 24831  Polycply 25343  degcdgr 25346  𝔸caa 25472  degAAcdgraa 40962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-0p 24832  df-ply 25347  df-coe 25349  df-dgr 25350  df-aa 25473  df-dgraa 40964
This theorem is referenced by:  mpaaeu  40972
  Copyright terms: Public domain W3C validator