Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraa0p Structured version   Visualization version   GIF version

Theorem dgraa0p 40890
Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgraa0p ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 ↔ 𝑃 = 0𝑝))

Proof of Theorem dgraa0p
StepHypRef Expression
1 simpl3 1191 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA𝐴))
2 simpl2 1190 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ))
3 dgrcl 25299 . . . . . . . . 9 (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0)
54nn0red 12224 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ)
6 simpl1 1189 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸)
7 dgraacl 40887 . . . . . . . . 9 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ ℕ)
86, 7syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA𝐴) ∈ ℕ)
98nnred 11918 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA𝐴) ∈ ℝ)
105, 9ltnled 11052 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA𝐴) ↔ ¬ (degAA𝐴) ≤ (deg‘𝑃)))
111, 10mpbid 231 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA𝐴) ≤ (deg‘𝑃))
12 simpl2 1190 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ))
13 simprl 767 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝑃 ≠ 0𝑝)
14 simpl1 1189 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ 𝔸)
15 aacn 25382 . . . . . . . 8 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ ℂ)
17 simprr 769 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → (𝑃𝐴) = 0)
18 dgraaub 40889 . . . . . . 7 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
1912, 13, 16, 17, 18syl22anc 835 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
2019expr 456 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃𝐴) = 0 → (degAA𝐴) ≤ (deg‘𝑃)))
2111, 20mtod 197 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃𝐴) = 0)
2221ex 412 . . 3 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃𝐴) = 0))
2322necon4ad 2961 . 2 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 → 𝑃 = 0𝑝))
24 0pval 24740 . . . . 5 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
2515, 24syl 17 . . . 4 (𝐴 ∈ 𝔸 → (0𝑝𝐴) = 0)
26 fveq1 6755 . . . . 5 (𝑃 = 0𝑝 → (𝑃𝐴) = (0𝑝𝐴))
2726eqeq1d 2740 . . . 4 (𝑃 = 0𝑝 → ((𝑃𝐴) = 0 ↔ (0𝑝𝐴) = 0))
2825, 27syl5ibrcom 246 . . 3 (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃𝐴) = 0))
29283ad2ant1 1131 . 2 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → (𝑃 = 0𝑝 → (𝑃𝐴) = 0))
3023, 29impbid 211 1 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 ↔ 𝑃 = 0𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  cc 10800  0cc0 10802   < clt 10940  cle 10941  cn 11903  0cn0 12163  cq 12617  0𝑝c0p 24738  Polycply 25250  degcdgr 25253  𝔸caa 25379  degAAcdgraa 40881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257  df-aa 25380  df-dgraa 40883
This theorem is referenced by:  mpaaeu  40891
  Copyright terms: Public domain W3C validator