|   | Mathbox for Stefan O'Rear | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dgraa0p | Structured version Visualization version GIF version | ||
| Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| dgraa0p | ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl3 1193 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA‘𝐴)) | |
| 2 | simpl2 1192 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ)) | |
| 3 | dgrcl 26273 | . . . . . . . . 9 ⊢ (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0) | 
| 5 | 4 | nn0red 12590 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ) | 
| 6 | simpl1 1191 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸) | |
| 7 | dgraacl 43163 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℕ) | 
| 9 | 8 | nnred 12282 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℝ) | 
| 10 | 5, 9 | ltnled 11409 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA‘𝐴) ↔ ¬ (degAA‘𝐴) ≤ (deg‘𝑃))) | 
| 11 | 1, 10 | mpbid 232 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA‘𝐴) ≤ (deg‘𝑃)) | 
| 12 | simpl2 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ)) | |
| 13 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ≠ 0𝑝) | |
| 14 | simpl1 1191 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ 𝔸) | |
| 15 | aacn 26360 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ ℂ) | 
| 17 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (𝑃‘𝐴) = 0) | |
| 18 | dgraaub 43165 | . . . . . . 7 ⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | |
| 19 | 12, 13, 16, 17, 18 | syl22anc 838 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | 
| 20 | 19 | expr 456 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃‘𝐴) = 0 → (degAA‘𝐴) ≤ (deg‘𝑃))) | 
| 21 | 11, 20 | mtod 198 | . . . 4 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃‘𝐴) = 0) | 
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃‘𝐴) = 0)) | 
| 23 | 22 | necon4ad 2958 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 → 𝑃 = 0𝑝)) | 
| 24 | 0pval 25707 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
| 25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝔸 → (0𝑝‘𝐴) = 0) | 
| 26 | fveq1 6904 | . . . . 5 ⊢ (𝑃 = 0𝑝 → (𝑃‘𝐴) = (0𝑝‘𝐴)) | |
| 27 | 26 | eqeq1d 2738 | . . . 4 ⊢ (𝑃 = 0𝑝 → ((𝑃‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) | 
| 28 | 25, 27 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) | 
| 29 | 28 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) | 
| 30 | 23, 29 | impbid 212 | 1 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5142 ‘cfv 6560 ℂcc 11154 0cc0 11156 < clt 11296 ≤ cle 11297 ℕcn 12267 ℕ0cn0 12528 ℚcq 12991 0𝑝c0p 25705 Polycply 26224 degcdgr 26227 𝔸caa 26357 degAAcdgraa 43157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-sum 15724 df-0p 25706 df-ply 26228 df-coe 26230 df-dgr 26231 df-aa 26358 df-dgraa 43159 | 
| This theorem is referenced by: mpaaeu 43167 | 
| Copyright terms: Public domain | W3C validator |