Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraa0p Structured version   Visualization version   GIF version

Theorem dgraa0p 40618
Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgraa0p ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 ↔ 𝑃 = 0𝑝))

Proof of Theorem dgraa0p
StepHypRef Expression
1 simpl3 1195 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA𝐴))
2 simpl2 1194 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ))
3 dgrcl 25081 . . . . . . . . 9 (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0)
54nn0red 12116 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ)
6 simpl1 1193 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸)
7 dgraacl 40615 . . . . . . . . 9 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ ℕ)
86, 7syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA𝐴) ∈ ℕ)
98nnred 11810 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA𝐴) ∈ ℝ)
105, 9ltnled 10944 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA𝐴) ↔ ¬ (degAA𝐴) ≤ (deg‘𝑃)))
111, 10mpbid 235 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA𝐴) ≤ (deg‘𝑃))
12 simpl2 1194 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ))
13 simprl 771 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝑃 ≠ 0𝑝)
14 simpl1 1193 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ 𝔸)
15 aacn 25164 . . . . . . . 8 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ ℂ)
17 simprr 773 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → (𝑃𝐴) = 0)
18 dgraaub 40617 . . . . . . 7 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
1912, 13, 16, 17, 18syl22anc 839 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
2019expr 460 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃𝐴) = 0 → (degAA𝐴) ≤ (deg‘𝑃)))
2111, 20mtod 201 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃𝐴) = 0)
2221ex 416 . . 3 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃𝐴) = 0))
2322necon4ad 2951 . 2 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 → 𝑃 = 0𝑝))
24 0pval 24522 . . . . 5 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
2515, 24syl 17 . . . 4 (𝐴 ∈ 𝔸 → (0𝑝𝐴) = 0)
26 fveq1 6694 . . . . 5 (𝑃 = 0𝑝 → (𝑃𝐴) = (0𝑝𝐴))
2726eqeq1d 2738 . . . 4 (𝑃 = 0𝑝 → ((𝑃𝐴) = 0 ↔ (0𝑝𝐴) = 0))
2825, 27syl5ibrcom 250 . . 3 (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃𝐴) = 0))
29283ad2ant1 1135 . 2 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → (𝑃 = 0𝑝 → (𝑃𝐴) = 0))
3023, 29impbid 215 1 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 ↔ 𝑃 = 0𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  cfv 6358  cc 10692  0cc0 10694   < clt 10832  cle 10833  cn 11795  0cn0 12055  cq 12509  0𝑝c0p 24520  Polycply 25032  degcdgr 25035  𝔸caa 25161  degAAcdgraa 40609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-rlim 15015  df-sum 15215  df-0p 24521  df-ply 25036  df-coe 25038  df-dgr 25039  df-aa 25162  df-dgraa 40611
This theorem is referenced by:  mpaaeu  40619
  Copyright terms: Public domain W3C validator