| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dgraa0p | Structured version Visualization version GIF version | ||
| Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| Ref | Expression |
|---|---|
| dgraa0p | ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl3 1194 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA‘𝐴)) | |
| 2 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ)) | |
| 3 | dgrcl 26165 | . . . . . . . . 9 ⊢ (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0) |
| 5 | 4 | nn0red 12443 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ) |
| 6 | simpl1 1192 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸) | |
| 7 | dgraacl 43187 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℕ) |
| 9 | 8 | nnred 12140 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℝ) |
| 10 | 5, 9 | ltnled 11260 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA‘𝐴) ↔ ¬ (degAA‘𝐴) ≤ (deg‘𝑃))) |
| 11 | 1, 10 | mpbid 232 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA‘𝐴) ≤ (deg‘𝑃)) |
| 12 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ)) | |
| 13 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ≠ 0𝑝) | |
| 14 | simpl1 1192 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ 𝔸) | |
| 15 | aacn 26252 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ ℂ) |
| 17 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (𝑃‘𝐴) = 0) | |
| 18 | dgraaub 43189 | . . . . . . 7 ⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | |
| 19 | 12, 13, 16, 17, 18 | syl22anc 838 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) |
| 20 | 19 | expr 456 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃‘𝐴) = 0 → (degAA‘𝐴) ≤ (deg‘𝑃))) |
| 21 | 11, 20 | mtod 198 | . . . 4 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃‘𝐴) = 0) |
| 22 | 21 | ex 412 | . . 3 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃‘𝐴) = 0)) |
| 23 | 22 | necon4ad 2947 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 → 𝑃 = 0𝑝)) |
| 24 | 0pval 25599 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
| 25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝔸 → (0𝑝‘𝐴) = 0) |
| 26 | fveq1 6821 | . . . . 5 ⊢ (𝑃 = 0𝑝 → (𝑃‘𝐴) = (0𝑝‘𝐴)) | |
| 27 | 26 | eqeq1d 2733 | . . . 4 ⊢ (𝑃 = 0𝑝 → ((𝑃‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) |
| 28 | 25, 27 | syl5ibrcom 247 | . . 3 ⊢ (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) |
| 29 | 28 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) |
| 30 | 23, 29 | impbid 212 | 1 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 ℂcc 11004 0cc0 11006 < clt 11146 ≤ cle 11147 ℕcn 12125 ℕ0cn0 12381 ℚcq 12846 0𝑝c0p 25597 Polycply 26116 degcdgr 26119 𝔸caa 26249 degAAcdgraa 43181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-0p 25598 df-ply 26120 df-coe 26122 df-dgr 26123 df-aa 26250 df-dgraa 43183 |
| This theorem is referenced by: mpaaeu 43191 |
| Copyright terms: Public domain | W3C validator |