Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraa0p Structured version   Visualization version   GIF version

Theorem dgraa0p 43139
Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.)
Assertion
Ref Expression
dgraa0p ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 ↔ 𝑃 = 0𝑝))

Proof of Theorem dgraa0p
StepHypRef Expression
1 simpl3 1193 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA𝐴))
2 simpl2 1192 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ))
3 dgrcl 26209 . . . . . . . . 9 (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0)
54nn0red 12571 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ)
6 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸)
7 dgraacl 43136 . . . . . . . . 9 (𝐴 ∈ 𝔸 → (degAA𝐴) ∈ ℕ)
86, 7syl 17 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA𝐴) ∈ ℕ)
98nnred 12263 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA𝐴) ∈ ℝ)
105, 9ltnled 11390 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA𝐴) ↔ ¬ (degAA𝐴) ≤ (deg‘𝑃)))
111, 10mpbid 232 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA𝐴) ≤ (deg‘𝑃))
12 simpl2 1192 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ))
13 simprl 770 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝑃 ≠ 0𝑝)
14 simpl1 1191 . . . . . . . 8 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ 𝔸)
15 aacn 26296 . . . . . . . 8 (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ)
1614, 15syl 17 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ ℂ)
17 simprr 772 . . . . . . 7 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → (𝑃𝐴) = 0)
18 dgraaub 43138 . . . . . . 7 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
1912, 13, 16, 17, 18syl22anc 838 . . . . . 6 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
2019expr 456 . . . . 5 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃𝐴) = 0 → (degAA𝐴) ≤ (deg‘𝑃)))
2111, 20mtod 198 . . . 4 (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃𝐴) = 0)
2221ex 412 . . 3 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃𝐴) = 0))
2322necon4ad 2950 . 2 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 → 𝑃 = 0𝑝))
24 0pval 25643 . . . . 5 (𝐴 ∈ ℂ → (0𝑝𝐴) = 0)
2515, 24syl 17 . . . 4 (𝐴 ∈ 𝔸 → (0𝑝𝐴) = 0)
26 fveq1 6885 . . . . 5 (𝑃 = 0𝑝 → (𝑃𝐴) = (0𝑝𝐴))
2726eqeq1d 2736 . . . 4 (𝑃 = 0𝑝 → ((𝑃𝐴) = 0 ↔ (0𝑝𝐴) = 0))
2825, 27syl5ibrcom 247 . . 3 (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃𝐴) = 0))
29283ad2ant1 1133 . 2 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → (𝑃 = 0𝑝 → (𝑃𝐴) = 0))
3023, 29impbid 212 1 ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA𝐴)) → ((𝑃𝐴) = 0 ↔ 𝑃 = 0𝑝))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cfv 6541  cc 11135  0cc0 11137   < clt 11277  cle 11278  cn 12248  0cn0 12509  cq 12972  0𝑝c0p 25641  Polycply 26160  degcdgr 26163  𝔸caa 26293  degAAcdgraa 43130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-sum 15706  df-0p 25642  df-ply 26164  df-coe 26166  df-dgr 26167  df-aa 26294  df-dgraa 43132
This theorem is referenced by:  mpaaeu  43140
  Copyright terms: Public domain W3C validator