Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dgraa0p | Structured version Visualization version GIF version |
Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
dgraa0p | ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1192 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA‘𝐴)) | |
2 | simpl2 1191 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ)) | |
3 | dgrcl 25392 | . . . . . . . . 9 ⊢ (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0) |
5 | 4 | nn0red 12294 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ) |
6 | simpl1 1190 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸) | |
7 | dgraacl 40968 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℕ) |
9 | 8 | nnred 11988 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℝ) |
10 | 5, 9 | ltnled 11122 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA‘𝐴) ↔ ¬ (degAA‘𝐴) ≤ (deg‘𝑃))) |
11 | 1, 10 | mpbid 231 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA‘𝐴) ≤ (deg‘𝑃)) |
12 | simpl2 1191 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ)) | |
13 | simprl 768 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ≠ 0𝑝) | |
14 | simpl1 1190 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ 𝔸) | |
15 | aacn 25475 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ ℂ) |
17 | simprr 770 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (𝑃‘𝐴) = 0) | |
18 | dgraaub 40970 | . . . . . . 7 ⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | |
19 | 12, 13, 16, 17, 18 | syl22anc 836 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) |
20 | 19 | expr 457 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃‘𝐴) = 0 → (degAA‘𝐴) ≤ (deg‘𝑃))) |
21 | 11, 20 | mtod 197 | . . . 4 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃‘𝐴) = 0) |
22 | 21 | ex 413 | . . 3 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃‘𝐴) = 0)) |
23 | 22 | necon4ad 2964 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 → 𝑃 = 0𝑝)) |
24 | 0pval 24833 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝔸 → (0𝑝‘𝐴) = 0) |
26 | fveq1 6770 | . . . . 5 ⊢ (𝑃 = 0𝑝 → (𝑃‘𝐴) = (0𝑝‘𝐴)) | |
27 | 26 | eqeq1d 2742 | . . . 4 ⊢ (𝑃 = 0𝑝 → ((𝑃‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) |
28 | 25, 27 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) |
29 | 28 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) |
30 | 23, 29 | impbid 211 | 1 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 ‘cfv 6432 ℂcc 10870 0cc0 10872 < clt 11010 ≤ cle 11011 ℕcn 11973 ℕ0cn0 12233 ℚcq 12687 0𝑝c0p 24831 Polycply 25343 degcdgr 25346 𝔸caa 25472 degAAcdgraa 40962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-q 12688 df-rp 12730 df-fz 13239 df-fzo 13382 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-rlim 15196 df-sum 15396 df-0p 24832 df-ply 25347 df-coe 25349 df-dgr 25350 df-aa 25473 df-dgraa 40964 |
This theorem is referenced by: mpaaeu 40972 |
Copyright terms: Public domain | W3C validator |