Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpdisj Structured version   Visualization version   GIF version

Theorem lshpdisj 36928
Description: A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshpdisj.v 𝑉 = (Base‘𝑊)
lshpdisj.o 0 = (0g𝑊)
lshpdisj.n 𝑁 = (LSpan‘𝑊)
lshpdisj.p = (LSSum‘𝑊)
lshpdisj.h 𝐻 = (LSHyp‘𝑊)
lshpdisj.w (𝜑𝑊 ∈ LVec)
lshpdisj.u (𝜑𝑈𝐻)
lshpdisj.x (𝜑𝑋𝑉)
lshpdisj.e (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
Assertion
Ref Expression
lshpdisj (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })

Proof of Theorem lshpdisj
Dummy variables 𝑣 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpdisj.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
2 lveclmod 20283 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
43adantr 480 . . . . . . 7 ((𝜑𝑣𝑈) → 𝑊 ∈ LMod)
5 lshpdisj.x . . . . . . . 8 (𝜑𝑋𝑉)
65adantr 480 . . . . . . 7 ((𝜑𝑣𝑈) → 𝑋𝑉)
7 eqid 2738 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2738 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 lshpdisj.v . . . . . . . 8 𝑉 = (Base‘𝑊)
10 eqid 2738 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
11 lshpdisj.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
127, 8, 9, 10, 11lspsnel 20180 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
134, 6, 12syl2anc 583 . . . . . 6 ((𝜑𝑣𝑈) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
14 lshpdisj.p . . . . . . . . . . . . . . . . 17 = (LSSum‘𝑊)
15 lshpdisj.h . . . . . . . . . . . . . . . . 17 𝐻 = (LSHyp‘𝑊)
16 lshpdisj.u . . . . . . . . . . . . . . . . 17 (𝜑𝑈𝐻)
17 lshpdisj.e . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
189, 11, 14, 15, 3, 16, 5, 17lshpnel 36924 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑋𝑈)
1918ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → ¬ 𝑋𝑈)
20 lshpdisj.o . . . . . . . . . . . . . . . 16 0 = (0g𝑊)
21 eqid 2738 . . . . . . . . . . . . . . . 16 (LSubSp‘𝑊) = (LSubSp‘𝑊)
221ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑊 ∈ LVec)
2321, 15, 3, 16lshplss 36922 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (LSubSp‘𝑊))
2423ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑈 ∈ (LSubSp‘𝑊))
255ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑋𝑉)
263adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
27 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
285adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑋𝑉)
299, 10, 7, 8, 11, 26, 27, 28lspsneli 20178 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
3029adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑘( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
31 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑘( ·𝑠𝑊)𝑋) ≠ 0 )
329, 20, 21, 11, 22, 24, 25, 30, 31lspsnel4 20301 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑋𝑈 ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
3319, 32mtbid 323 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈)
3433ex 412 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ≠ 0 → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
3534necon4ad 2961 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 → (𝑘( ·𝑠𝑊)𝑋) = 0 ))
36 eleq1 2826 . . . . . . . . . . . . 13 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈 ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
37 eqeq1 2742 . . . . . . . . . . . . 13 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣 = 0 ↔ (𝑘( ·𝑠𝑊)𝑋) = 0 ))
3836, 37imbi12d 344 . . . . . . . . . . . 12 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → ((𝑣𝑈𝑣 = 0 ) ↔ ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 → (𝑘( ·𝑠𝑊)𝑋) = 0 )))
3935, 38syl5ibrcom 246 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈𝑣 = 0 )))
4039ex 412 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈𝑣 = 0 ))))
4140com23 86 . . . . . . . . 9 (𝜑 → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣𝑈𝑣 = 0 ))))
4241com24 95 . . . . . . . 8 (𝜑 → (𝑣𝑈 → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))))
4342imp31 417 . . . . . . 7 (((𝜑𝑣𝑈) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4443rexlimdva 3212 . . . . . 6 ((𝜑𝑣𝑈) → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4513, 44sylbid 239 . . . . 5 ((𝜑𝑣𝑈) → (𝑣 ∈ (𝑁‘{𝑋}) → 𝑣 = 0 ))
4645expimpd 453 . . . 4 (𝜑 → ((𝑣𝑈𝑣 ∈ (𝑁‘{𝑋})) → 𝑣 = 0 ))
47 elin 3899 . . . 4 (𝑣 ∈ (𝑈 ∩ (𝑁‘{𝑋})) ↔ (𝑣𝑈𝑣 ∈ (𝑁‘{𝑋})))
48 velsn 4574 . . . 4 (𝑣 ∈ { 0 } ↔ 𝑣 = 0 )
4946, 47, 483imtr4g 295 . . 3 (𝜑 → (𝑣 ∈ (𝑈 ∩ (𝑁‘{𝑋})) → 𝑣 ∈ { 0 }))
5049ssrdv 3923 . 2 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) ⊆ { 0 })
519, 21, 11lspsncl 20154 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
523, 5, 51syl2anc 583 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5321lssincl 20142 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
543, 23, 52, 53syl3anc 1369 . . 3 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
5520, 21lss0ss 20125 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑈 ∩ (𝑁‘{𝑋})))
563, 54, 55syl2anc 583 . 2 (𝜑 → { 0 } ⊆ (𝑈 ∩ (𝑁‘{𝑋})))
5750, 56eqssd 3934 1 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cin 3882  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279  LSHypclsh 36916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-lsm 19156  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280  df-lshyp 36918
This theorem is referenced by:  lshpsmreu  37050  lshpkrlem5  37055
  Copyright terms: Public domain W3C validator