Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpdisj Structured version   Visualization version   GIF version

Theorem lshpdisj 38988
Description: A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshpdisj.v 𝑉 = (Base‘𝑊)
lshpdisj.o 0 = (0g𝑊)
lshpdisj.n 𝑁 = (LSpan‘𝑊)
lshpdisj.p = (LSSum‘𝑊)
lshpdisj.h 𝐻 = (LSHyp‘𝑊)
lshpdisj.w (𝜑𝑊 ∈ LVec)
lshpdisj.u (𝜑𝑈𝐻)
lshpdisj.x (𝜑𝑋𝑉)
lshpdisj.e (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
Assertion
Ref Expression
lshpdisj (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })

Proof of Theorem lshpdisj
Dummy variables 𝑣 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpdisj.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
2 lveclmod 21105 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
43adantr 480 . . . . . . 7 ((𝜑𝑣𝑈) → 𝑊 ∈ LMod)
5 lshpdisj.x . . . . . . . 8 (𝜑𝑋𝑉)
65adantr 480 . . . . . . 7 ((𝜑𝑣𝑈) → 𝑋𝑉)
7 eqid 2737 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2737 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 lshpdisj.v . . . . . . . 8 𝑉 = (Base‘𝑊)
10 eqid 2737 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
11 lshpdisj.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
127, 8, 9, 10, 11ellspsn 21001 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
134, 6, 12syl2anc 584 . . . . . 6 ((𝜑𝑣𝑈) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
14 lshpdisj.p . . . . . . . . . . . . . . . . 17 = (LSSum‘𝑊)
15 lshpdisj.h . . . . . . . . . . . . . . . . 17 𝐻 = (LSHyp‘𝑊)
16 lshpdisj.u . . . . . . . . . . . . . . . . 17 (𝜑𝑈𝐻)
17 lshpdisj.e . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
189, 11, 14, 15, 3, 16, 5, 17lshpnel 38984 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑋𝑈)
1918ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → ¬ 𝑋𝑈)
20 lshpdisj.o . . . . . . . . . . . . . . . 16 0 = (0g𝑊)
21 eqid 2737 . . . . . . . . . . . . . . . 16 (LSubSp‘𝑊) = (LSubSp‘𝑊)
221ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑊 ∈ LVec)
2321, 15, 3, 16lshplss 38982 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (LSubSp‘𝑊))
2423ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑈 ∈ (LSubSp‘𝑊))
255ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑋𝑉)
263adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
27 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
285adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑋𝑉)
299, 10, 7, 8, 11, 26, 27, 28ellspsni 20999 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
3029adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑘( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
31 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑘( ·𝑠𝑊)𝑋) ≠ 0 )
329, 20, 21, 11, 22, 24, 25, 30, 31ellspsn4 21126 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑋𝑈 ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
3319, 32mtbid 324 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈)
3433ex 412 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ≠ 0 → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
3534necon4ad 2959 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 → (𝑘( ·𝑠𝑊)𝑋) = 0 ))
36 eleq1 2829 . . . . . . . . . . . . 13 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈 ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
37 eqeq1 2741 . . . . . . . . . . . . 13 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣 = 0 ↔ (𝑘( ·𝑠𝑊)𝑋) = 0 ))
3836, 37imbi12d 344 . . . . . . . . . . . 12 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → ((𝑣𝑈𝑣 = 0 ) ↔ ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 → (𝑘( ·𝑠𝑊)𝑋) = 0 )))
3935, 38syl5ibrcom 247 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈𝑣 = 0 )))
4039ex 412 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈𝑣 = 0 ))))
4140com23 86 . . . . . . . . 9 (𝜑 → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣𝑈𝑣 = 0 ))))
4241com24 95 . . . . . . . 8 (𝜑 → (𝑣𝑈 → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))))
4342imp31 417 . . . . . . 7 (((𝜑𝑣𝑈) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4443rexlimdva 3155 . . . . . 6 ((𝜑𝑣𝑈) → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4513, 44sylbid 240 . . . . 5 ((𝜑𝑣𝑈) → (𝑣 ∈ (𝑁‘{𝑋}) → 𝑣 = 0 ))
4645expimpd 453 . . . 4 (𝜑 → ((𝑣𝑈𝑣 ∈ (𝑁‘{𝑋})) → 𝑣 = 0 ))
47 elin 3967 . . . 4 (𝑣 ∈ (𝑈 ∩ (𝑁‘{𝑋})) ↔ (𝑣𝑈𝑣 ∈ (𝑁‘{𝑋})))
48 velsn 4642 . . . 4 (𝑣 ∈ { 0 } ↔ 𝑣 = 0 )
4946, 47, 483imtr4g 296 . . 3 (𝜑 → (𝑣 ∈ (𝑈 ∩ (𝑁‘{𝑋})) → 𝑣 ∈ { 0 }))
5049ssrdv 3989 . 2 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) ⊆ { 0 })
519, 21, 11lspsncl 20975 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
523, 5, 51syl2anc 584 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5321lssincl 20963 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
543, 23, 52, 53syl3anc 1373 . . 3 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
5520, 21lss0ss 20947 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑈 ∩ (𝑁‘{𝑋})))
563, 54, 55syl2anc 584 . 2 (𝜑 → { 0 } ⊆ (𝑈 ∩ (𝑁‘{𝑋})))
5750, 56eqssd 4001 1 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cin 3950  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  LSSumclsm 19652  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969  LVecclvec 21101  LSHypclsh 38976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lshyp 38978
This theorem is referenced by:  lshpsmreu  39110  lshpkrlem5  39115
  Copyright terms: Public domain W3C validator