Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpdisj Structured version   Visualization version   GIF version

Theorem lshpdisj 34946
Description: A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshpdisj.v 𝑉 = (Base‘𝑊)
lshpdisj.o 0 = (0g𝑊)
lshpdisj.n 𝑁 = (LSpan‘𝑊)
lshpdisj.p = (LSSum‘𝑊)
lshpdisj.h 𝐻 = (LSHyp‘𝑊)
lshpdisj.w (𝜑𝑊 ∈ LVec)
lshpdisj.u (𝜑𝑈𝐻)
lshpdisj.x (𝜑𝑋𝑉)
lshpdisj.e (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
Assertion
Ref Expression
lshpdisj (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })

Proof of Theorem lshpdisj
Dummy variables 𝑣 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpdisj.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
2 lveclmod 19381 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
43adantr 472 . . . . . . 7 ((𝜑𝑣𝑈) → 𝑊 ∈ LMod)
5 lshpdisj.x . . . . . . . 8 (𝜑𝑋𝑉)
65adantr 472 . . . . . . 7 ((𝜑𝑣𝑈) → 𝑋𝑉)
7 eqid 2765 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2765 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 lshpdisj.v . . . . . . . 8 𝑉 = (Base‘𝑊)
10 eqid 2765 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
11 lshpdisj.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
127, 8, 9, 10, 11lspsnel 19278 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
134, 6, 12syl2anc 579 . . . . . 6 ((𝜑𝑣𝑈) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
14 lshpdisj.p . . . . . . . . . . . . . . . . 17 = (LSSum‘𝑊)
15 lshpdisj.h . . . . . . . . . . . . . . . . 17 𝐻 = (LSHyp‘𝑊)
16 lshpdisj.u . . . . . . . . . . . . . . . . 17 (𝜑𝑈𝐻)
17 lshpdisj.e . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
189, 11, 14, 15, 3, 16, 5, 17lshpnel 34942 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑋𝑈)
1918ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → ¬ 𝑋𝑈)
20 lshpdisj.o . . . . . . . . . . . . . . . 16 0 = (0g𝑊)
21 eqid 2765 . . . . . . . . . . . . . . . 16 (LSubSp‘𝑊) = (LSubSp‘𝑊)
221ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑊 ∈ LVec)
2321, 15, 3, 16lshplss 34940 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (LSubSp‘𝑊))
2423ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑈 ∈ (LSubSp‘𝑊))
255ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑋𝑉)
263adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
27 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
285adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑋𝑉)
299, 10, 7, 8, 11, 26, 27, 28lspsneli 19276 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
3029adantr 472 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑘( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
31 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑘( ·𝑠𝑊)𝑋) ≠ 0 )
329, 20, 21, 11, 22, 24, 25, 30, 31lspsnel4 19399 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑋𝑈 ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
3319, 32mtbid 315 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈)
3433ex 401 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ≠ 0 → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
3534necon4ad 2956 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 → (𝑘( ·𝑠𝑊)𝑋) = 0 ))
36 eleq1 2832 . . . . . . . . . . . . 13 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈 ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
37 eqeq1 2769 . . . . . . . . . . . . 13 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣 = 0 ↔ (𝑘( ·𝑠𝑊)𝑋) = 0 ))
3836, 37imbi12d 335 . . . . . . . . . . . 12 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → ((𝑣𝑈𝑣 = 0 ) ↔ ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 → (𝑘( ·𝑠𝑊)𝑋) = 0 )))
3935, 38syl5ibrcom 238 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈𝑣 = 0 )))
4039ex 401 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈𝑣 = 0 ))))
4140com23 86 . . . . . . . . 9 (𝜑 → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣𝑈𝑣 = 0 ))))
4241com24 95 . . . . . . . 8 (𝜑 → (𝑣𝑈 → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))))
4342imp31 408 . . . . . . 7 (((𝜑𝑣𝑈) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4443rexlimdva 3178 . . . . . 6 ((𝜑𝑣𝑈) → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4513, 44sylbid 231 . . . . 5 ((𝜑𝑣𝑈) → (𝑣 ∈ (𝑁‘{𝑋}) → 𝑣 = 0 ))
4645expimpd 445 . . . 4 (𝜑 → ((𝑣𝑈𝑣 ∈ (𝑁‘{𝑋})) → 𝑣 = 0 ))
47 elin 3960 . . . 4 (𝑣 ∈ (𝑈 ∩ (𝑁‘{𝑋})) ↔ (𝑣𝑈𝑣 ∈ (𝑁‘{𝑋})))
48 velsn 4352 . . . 4 (𝑣 ∈ { 0 } ↔ 𝑣 = 0 )
4946, 47, 483imtr4g 287 . . 3 (𝜑 → (𝑣 ∈ (𝑈 ∩ (𝑁‘{𝑋})) → 𝑣 ∈ { 0 }))
5049ssrdv 3769 . 2 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) ⊆ { 0 })
519, 21, 11lspsncl 19252 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
523, 5, 51syl2anc 579 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5321lssincl 19240 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
543, 23, 52, 53syl3anc 1490 . . 3 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
5520, 21lss0ss 19221 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑈 ∩ (𝑁‘{𝑋})))
563, 54, 55syl2anc 579 . 2 (𝜑 → { 0 } ⊆ (𝑈 ∩ (𝑁‘{𝑋})))
5750, 56eqssd 3780 1 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wrex 3056  cin 3733  wss 3734  {csn 4336  cfv 6070  (class class class)co 6844  Basecbs 16133  Scalarcsca 16220   ·𝑠 cvsca 16221  0gc0g 16369  LSSumclsm 18316  LModclmod 19135  LSubSpclss 19204  LSpanclspn 19246  LVecclvec 19377  LSHypclsh 34934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-1st 7368  df-2nd 7369  df-tpos 7557  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-en 8163  df-dom 8164  df-sdom 8165  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-2 11337  df-3 11338  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-0g 16371  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-grp 17695  df-minusg 17696  df-sbg 17697  df-subg 17858  df-lsm 18318  df-mgp 18760  df-ur 18772  df-ring 18819  df-oppr 18893  df-dvdsr 18911  df-unit 18912  df-invr 18942  df-drng 19021  df-lmod 19137  df-lss 19205  df-lsp 19247  df-lvec 19378  df-lshyp 34936
This theorem is referenced by:  lshpsmreu  35068  lshpkrlem5  35073
  Copyright terms: Public domain W3C validator