Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpdisj Structured version   Visualization version   GIF version

Theorem lshpdisj 37794
Description: A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshpdisj.v 𝑉 = (Base‘𝑊)
lshpdisj.o 0 = (0g𝑊)
lshpdisj.n 𝑁 = (LSpan‘𝑊)
lshpdisj.p = (LSSum‘𝑊)
lshpdisj.h 𝐻 = (LSHyp‘𝑊)
lshpdisj.w (𝜑𝑊 ∈ LVec)
lshpdisj.u (𝜑𝑈𝐻)
lshpdisj.x (𝜑𝑋𝑉)
lshpdisj.e (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
Assertion
Ref Expression
lshpdisj (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })

Proof of Theorem lshpdisj
Dummy variables 𝑣 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpdisj.w . . . . . . . . 9 (𝜑𝑊 ∈ LVec)
2 lveclmod 20704 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
43adantr 482 . . . . . . 7 ((𝜑𝑣𝑈) → 𝑊 ∈ LMod)
5 lshpdisj.x . . . . . . . 8 (𝜑𝑋𝑉)
65adantr 482 . . . . . . 7 ((𝜑𝑣𝑈) → 𝑋𝑉)
7 eqid 2733 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2733 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 lshpdisj.v . . . . . . . 8 𝑉 = (Base‘𝑊)
10 eqid 2733 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
11 lshpdisj.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
127, 8, 9, 10, 11lspsnel 20601 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
134, 6, 12syl2anc 585 . . . . . 6 ((𝜑𝑣𝑈) → (𝑣 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋)))
14 lshpdisj.p . . . . . . . . . . . . . . . . 17 = (LSSum‘𝑊)
15 lshpdisj.h . . . . . . . . . . . . . . . . 17 𝐻 = (LSHyp‘𝑊)
16 lshpdisj.u . . . . . . . . . . . . . . . . 17 (𝜑𝑈𝐻)
17 lshpdisj.e . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
189, 11, 14, 15, 3, 16, 5, 17lshpnel 37790 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑋𝑈)
1918ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → ¬ 𝑋𝑈)
20 lshpdisj.o . . . . . . . . . . . . . . . 16 0 = (0g𝑊)
21 eqid 2733 . . . . . . . . . . . . . . . 16 (LSubSp‘𝑊) = (LSubSp‘𝑊)
221ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑊 ∈ LVec)
2321, 15, 3, 16lshplss 37788 . . . . . . . . . . . . . . . . 17 (𝜑𝑈 ∈ (LSubSp‘𝑊))
2423ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑈 ∈ (LSubSp‘𝑊))
255ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → 𝑋𝑉)
263adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
27 simpr 486 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
285adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑋𝑉)
299, 10, 7, 8, 11, 26, 27, 28lspsneli 20599 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
3029adantr 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑘( ·𝑠𝑊)𝑋) ∈ (𝑁‘{𝑋}))
31 simpr 486 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑘( ·𝑠𝑊)𝑋) ≠ 0 )
329, 20, 21, 11, 22, 24, 25, 30, 31lspsnel4 20724 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → (𝑋𝑈 ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
3319, 32mtbid 324 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑘( ·𝑠𝑊)𝑋) ≠ 0 ) → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈)
3433ex 414 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ≠ 0 → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
3534necon4ad 2960 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 → (𝑘( ·𝑠𝑊)𝑋) = 0 ))
36 eleq1 2822 . . . . . . . . . . . . 13 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈 ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈))
37 eqeq1 2737 . . . . . . . . . . . . 13 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣 = 0 ↔ (𝑘( ·𝑠𝑊)𝑋) = 0 ))
3836, 37imbi12d 345 . . . . . . . . . . . 12 (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → ((𝑣𝑈𝑣 = 0 ) ↔ ((𝑘( ·𝑠𝑊)𝑋) ∈ 𝑈 → (𝑘( ·𝑠𝑊)𝑋) = 0 )))
3935, 38syl5ibrcom 246 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈𝑣 = 0 )))
4039ex 414 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑣𝑈𝑣 = 0 ))))
4140com23 86 . . . . . . . . 9 (𝜑 → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣𝑈𝑣 = 0 ))))
4241com24 95 . . . . . . . 8 (𝜑 → (𝑣𝑈 → (𝑘 ∈ (Base‘(Scalar‘𝑊)) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))))
4342imp31 419 . . . . . . 7 (((𝜑𝑣𝑈) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4443rexlimdva 3156 . . . . . 6 ((𝜑𝑣𝑈) → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑣 = (𝑘( ·𝑠𝑊)𝑋) → 𝑣 = 0 ))
4513, 44sylbid 239 . . . . 5 ((𝜑𝑣𝑈) → (𝑣 ∈ (𝑁‘{𝑋}) → 𝑣 = 0 ))
4645expimpd 455 . . . 4 (𝜑 → ((𝑣𝑈𝑣 ∈ (𝑁‘{𝑋})) → 𝑣 = 0 ))
47 elin 3962 . . . 4 (𝑣 ∈ (𝑈 ∩ (𝑁‘{𝑋})) ↔ (𝑣𝑈𝑣 ∈ (𝑁‘{𝑋})))
48 velsn 4642 . . . 4 (𝑣 ∈ { 0 } ↔ 𝑣 = 0 )
4946, 47, 483imtr4g 296 . . 3 (𝜑 → (𝑣 ∈ (𝑈 ∩ (𝑁‘{𝑋})) → 𝑣 ∈ { 0 }))
5049ssrdv 3986 . 2 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) ⊆ { 0 })
519, 21, 11lspsncl 20575 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
523, 5, 51syl2anc 585 . . . 4 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
5321lssincl 20563 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
543, 23, 52, 53syl3anc 1372 . . 3 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊))
5520, 21lss0ss 20546 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∩ (𝑁‘{𝑋})) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑈 ∩ (𝑁‘{𝑋})))
563, 54, 55syl2anc 585 . 2 (𝜑 → { 0 } ⊆ (𝑈 ∩ (𝑁‘{𝑋})))
5750, 56eqssd 3997 1 (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wrex 3071  cin 3945  wss 3946  {csn 4626  cfv 6539  (class class class)co 7403  Basecbs 17139  Scalarcsca 17195   ·𝑠 cvsca 17196  0gc0g 17380  LSSumclsm 19494  LModclmod 20458  LSubSpclss 20529  LSpanclspn 20569  LVecclvec 20700  LSHypclsh 37782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-2 12270  df-3 12271  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-mulr 17206  df-0g 17382  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-submnd 18667  df-grp 18817  df-minusg 18818  df-sbg 18819  df-subg 18996  df-lsm 19496  df-mgp 19979  df-ur 19996  df-ring 20048  df-oppr 20138  df-dvdsr 20159  df-unit 20160  df-invr 20190  df-drng 20305  df-lmod 20460  df-lss 20530  df-lsp 20570  df-lvec 20701  df-lshyp 37784
This theorem is referenced by:  lshpsmreu  37916  lshpkrlem5  37921
  Copyright terms: Public domain W3C validator