![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr0eq | Structured version Visualization version GIF version |
Description: The covers relation is not transitive. (atcv0eq 32408 analog.) (Contributed by NM, 29-Nov-2011.) |
Ref | Expression |
---|---|
atcvr0eq.j | ⊢ ∨ = (join‘𝐾) |
atcvr0eq.z | ⊢ 0 = (0.‘𝐾) |
atcvr0eq.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atcvr0eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcvr0eq | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atcvr0eq.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
2 | atcvr0eq.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | atcvr0eq.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | atcvr1 39400 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
5 | atcvr0eq.z | . . . . . . . 8 ⊢ 0 = (0.‘𝐾) | |
6 | 5, 2, 3 | atcvr0 39270 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) |
7 | 6 | 3adant3 1131 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 𝐶𝑃) |
8 | 7 | biantrurd 532 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶(𝑃 ∨ 𝑄) ↔ ( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)))) |
9 | 4, 8 | bitrd 279 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ ( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)))) |
10 | simp1 1135 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
11 | hlop 39344 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
12 | 11 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ OP) |
13 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 5 | op0cl 39166 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
16 | 13, 3 | atbase 39271 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
17 | 16 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
18 | 13, 1, 3 | hlatjcl 39349 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
19 | 13, 2 | cvrntr 39408 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)) → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
20 | 10, 15, 17, 18, 19 | syl13anc 1371 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)) → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
21 | 9, 20 | sylbid 240 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
22 | 21 | necon4ad 2957 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) → 𝑃 = 𝑄)) |
23 | 1, 3 | hlatjidm 39351 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
24 | 23 | 3adant3 1131 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
25 | 7, 24 | breqtrrd 5176 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 𝐶(𝑃 ∨ 𝑃)) |
26 | oveq2 7439 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑃) = (𝑃 ∨ 𝑄)) | |
27 | 26 | breq2d 5160 | . . 3 ⊢ (𝑃 = 𝑄 → ( 0 𝐶(𝑃 ∨ 𝑃) ↔ 0 𝐶(𝑃 ∨ 𝑄))) |
28 | 25, 27 | syl5ibcom 245 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → 0 𝐶(𝑃 ∨ 𝑄))) |
29 | 22, 28 | impbid 212 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 joincjn 18369 0.cp0 18481 OPcops 39154 ⋖ ccvr 39244 Atomscatm 39245 HLchlt 39332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 |
This theorem is referenced by: atcvrj0 39411 |
Copyright terms: Public domain | W3C validator |