Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr0eq Structured version   Visualization version   GIF version

Theorem atcvr0eq 39450
Description: The covers relation is not transitive. (atcv0eq 32365 analog.) (Contributed by NM, 29-Nov-2011.)
Hypotheses
Ref Expression
atcvr0eq.j = (join‘𝐾)
atcvr0eq.z 0 = (0.‘𝐾)
atcvr0eq.c 𝐶 = ( ⋖ ‘𝐾)
atcvr0eq.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvr0eq ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))

Proof of Theorem atcvr0eq
StepHypRef Expression
1 atcvr0eq.j . . . . . 6 = (join‘𝐾)
2 atcvr0eq.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
3 atcvr0eq.a . . . . . 6 𝐴 = (Atoms‘𝐾)
41, 2, 3atcvr1 39441 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄𝑃𝐶(𝑃 𝑄)))
5 atcvr0eq.z . . . . . . . 8 0 = (0.‘𝐾)
65, 2, 3atcvr0 39311 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴) → 0 𝐶𝑃)
763adant3 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 𝐶𝑃)
87biantrurd 532 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝐶(𝑃 𝑄) ↔ ( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄))))
94, 8bitrd 279 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄))))
10 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ HL)
11 hlop 39385 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
12113ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ OP)
13 eqid 2736 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1413, 5op0cl 39207 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 ∈ (Base‘𝐾))
1613, 3atbase 39312 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
17163ad2ant2 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 ∈ (Base‘𝐾))
1813, 1, 3hlatjcl 39390 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
1913, 2cvrntr 39449 . . . . 5 ((𝐾 ∈ HL ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄)) → ¬ 0 𝐶(𝑃 𝑄)))
2010, 15, 17, 18, 19syl13anc 1374 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄)) → ¬ 0 𝐶(𝑃 𝑄)))
219, 20sylbid 240 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ 0 𝐶(𝑃 𝑄)))
2221necon4ad 2952 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) → 𝑃 = 𝑄))
231, 3hlatjidm 39392 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
24233adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) = 𝑃)
257, 24breqtrrd 5152 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 𝐶(𝑃 𝑃))
26 oveq2 7418 . . . 4 (𝑃 = 𝑄 → (𝑃 𝑃) = (𝑃 𝑄))
2726breq2d 5136 . . 3 (𝑃 = 𝑄 → ( 0 𝐶(𝑃 𝑃) ↔ 0 𝐶(𝑃 𝑄)))
2825, 27syl5ibcom 245 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄0 𝐶(𝑃 𝑄)))
2922, 28impbid 212 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  joincjn 18328  0.cp0 18438  OPcops 39195  ccvr 39285  Atomscatm 39286  HLchlt 39373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374
This theorem is referenced by:  atcvrj0  39452
  Copyright terms: Public domain W3C validator