Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr0eq | Structured version Visualization version GIF version |
Description: The covers relation is not transitive. (atcv0eq 30741 analog.) (Contributed by NM, 29-Nov-2011.) |
Ref | Expression |
---|---|
atcvr0eq.j | ⊢ ∨ = (join‘𝐾) |
atcvr0eq.z | ⊢ 0 = (0.‘𝐾) |
atcvr0eq.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atcvr0eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcvr0eq | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atcvr0eq.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
2 | atcvr0eq.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | atcvr0eq.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | atcvr1 37431 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
5 | atcvr0eq.z | . . . . . . . 8 ⊢ 0 = (0.‘𝐾) | |
6 | 5, 2, 3 | atcvr0 37302 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) |
7 | 6 | 3adant3 1131 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 𝐶𝑃) |
8 | 7 | biantrurd 533 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶(𝑃 ∨ 𝑄) ↔ ( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)))) |
9 | 4, 8 | bitrd 278 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ ( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)))) |
10 | simp1 1135 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
11 | hlop 37376 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
12 | 11 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ OP) |
13 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 5 | op0cl 37198 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
16 | 13, 3 | atbase 37303 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
17 | 16 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
18 | 13, 1, 3 | hlatjcl 37381 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
19 | 13, 2 | cvrntr 37439 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)) → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
20 | 10, 15, 17, 18, 19 | syl13anc 1371 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)) → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
21 | 9, 20 | sylbid 239 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
22 | 21 | necon4ad 2962 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) → 𝑃 = 𝑄)) |
23 | 1, 3 | hlatjidm 37383 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
24 | 23 | 3adant3 1131 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
25 | 7, 24 | breqtrrd 5102 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 𝐶(𝑃 ∨ 𝑃)) |
26 | oveq2 7283 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑃) = (𝑃 ∨ 𝑄)) | |
27 | 26 | breq2d 5086 | . . 3 ⊢ (𝑃 = 𝑄 → ( 0 𝐶(𝑃 ∨ 𝑃) ↔ 0 𝐶(𝑃 ∨ 𝑄))) |
28 | 25, 27 | syl5ibcom 244 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → 0 𝐶(𝑃 ∨ 𝑄))) |
29 | 22, 28 | impbid 211 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 joincjn 18029 0.cp0 18141 OPcops 37186 ⋖ ccvr 37276 Atomscatm 37277 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: atcvrj0 37442 |
Copyright terms: Public domain | W3C validator |