| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr0eq | Structured version Visualization version GIF version | ||
| Description: The covers relation is not transitive. (atcv0eq 32327 analog.) (Contributed by NM, 29-Nov-2011.) |
| Ref | Expression |
|---|---|
| atcvr0eq.j | ⊢ ∨ = (join‘𝐾) |
| atcvr0eq.z | ⊢ 0 = (0.‘𝐾) |
| atcvr0eq.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| atcvr0eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atcvr0eq | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atcvr0eq.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 2 | atcvr0eq.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 3 | atcvr0eq.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 2, 3 | atcvr1 39416 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
| 5 | atcvr0eq.z | . . . . . . . 8 ⊢ 0 = (0.‘𝐾) | |
| 6 | 5, 2, 3 | atcvr0 39287 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) |
| 7 | 6 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 𝐶𝑃) |
| 8 | 7 | biantrurd 532 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶(𝑃 ∨ 𝑄) ↔ ( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)))) |
| 9 | 4, 8 | bitrd 279 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ ( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)))) |
| 10 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
| 11 | hlop 39361 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 12 | 11 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ OP) |
| 13 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 5 | op0cl 39183 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
| 16 | 13, 3 | atbase 39288 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 17 | 16 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 18 | 13, 1, 3 | hlatjcl 39366 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 19 | 13, 2 | cvrntr 39424 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)) → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
| 20 | 10, 15, 17, 18, 19 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)) → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
| 21 | 9, 20 | sylbid 240 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
| 22 | 21 | necon4ad 2944 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) → 𝑃 = 𝑄)) |
| 23 | 1, 3 | hlatjidm 39368 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
| 24 | 23 | 3adant3 1132 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
| 25 | 7, 24 | breqtrrd 5120 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 𝐶(𝑃 ∨ 𝑃)) |
| 26 | oveq2 7357 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑃) = (𝑃 ∨ 𝑄)) | |
| 27 | 26 | breq2d 5104 | . . 3 ⊢ (𝑃 = 𝑄 → ( 0 𝐶(𝑃 ∨ 𝑃) ↔ 0 𝐶(𝑃 ∨ 𝑄))) |
| 28 | 25, 27 | syl5ibcom 245 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → 0 𝐶(𝑃 ∨ 𝑄))) |
| 29 | 22, 28 | impbid 212 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 joincjn 18217 0.cp0 18327 OPcops 39171 ⋖ ccvr 39261 Atomscatm 39262 HLchlt 39349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39175 df-ol 39177 df-oml 39178 df-covers 39265 df-ats 39266 df-atl 39297 df-cvlat 39321 df-hlat 39350 |
| This theorem is referenced by: atcvrj0 39427 |
| Copyright terms: Public domain | W3C validator |