Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcvr0eq | Structured version Visualization version GIF version |
Description: The covers relation is not transitive. (atcv0eq 30642 analog.) (Contributed by NM, 29-Nov-2011.) |
Ref | Expression |
---|---|
atcvr0eq.j | ⊢ ∨ = (join‘𝐾) |
atcvr0eq.z | ⊢ 0 = (0.‘𝐾) |
atcvr0eq.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
atcvr0eq.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcvr0eq | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atcvr0eq.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
2 | atcvr0eq.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | atcvr0eq.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | atcvr1 37358 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ 𝑃𝐶(𝑃 ∨ 𝑄))) |
5 | atcvr0eq.z | . . . . . . . 8 ⊢ 0 = (0.‘𝐾) | |
6 | 5, 2, 3 | atcvr0 37229 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → 0 𝐶𝑃) |
7 | 6 | 3adant3 1130 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 𝐶𝑃) |
8 | 7 | biantrurd 532 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃𝐶(𝑃 ∨ 𝑄) ↔ ( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)))) |
9 | 4, 8 | bitrd 278 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 ↔ ( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)))) |
10 | simp1 1134 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
11 | hlop 37303 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
12 | 11 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ OP) |
13 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 5 | op0cl 37125 | . . . . . 6 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
15 | 12, 14 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
16 | 13, 3 | atbase 37230 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
17 | 16 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
18 | 13, 1, 3 | hlatjcl 37308 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
19 | 13, 2 | cvrntr 37366 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾))) → (( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)) → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
20 | 10, 15, 17, 18, 19 | syl13anc 1370 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (( 0 𝐶𝑃 ∧ 𝑃𝐶(𝑃 ∨ 𝑄)) → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
21 | 9, 20 | sylbid 239 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ¬ 0 𝐶(𝑃 ∨ 𝑄))) |
22 | 21 | necon4ad 2961 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) → 𝑃 = 𝑄)) |
23 | 1, 3 | hlatjidm 37310 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
24 | 23 | 3adant3 1130 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
25 | 7, 24 | breqtrrd 5098 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 0 𝐶(𝑃 ∨ 𝑃)) |
26 | oveq2 7263 | . . . 4 ⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑃) = (𝑃 ∨ 𝑄)) | |
27 | 26 | breq2d 5082 | . . 3 ⊢ (𝑃 = 𝑄 → ( 0 𝐶(𝑃 ∨ 𝑃) ↔ 0 𝐶(𝑃 ∨ 𝑄))) |
28 | 25, 27 | syl5ibcom 244 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 = 𝑄 → 0 𝐶(𝑃 ∨ 𝑄))) |
29 | 22, 28 | impbid 211 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ( 0 𝐶(𝑃 ∨ 𝑄) ↔ 𝑃 = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 joincjn 17944 0.cp0 18056 OPcops 37113 ⋖ ccvr 37203 Atomscatm 37204 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 |
This theorem is referenced by: atcvrj0 37369 |
Copyright terms: Public domain | W3C validator |