Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvr0eq Structured version   Visualization version   GIF version

Theorem atcvr0eq 39524
Description: The covers relation is not transitive. (atcv0eq 32359 analog.) (Contributed by NM, 29-Nov-2011.)
Hypotheses
Ref Expression
atcvr0eq.j = (join‘𝐾)
atcvr0eq.z 0 = (0.‘𝐾)
atcvr0eq.c 𝐶 = ( ⋖ ‘𝐾)
atcvr0eq.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvr0eq ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))

Proof of Theorem atcvr0eq
StepHypRef Expression
1 atcvr0eq.j . . . . . 6 = (join‘𝐾)
2 atcvr0eq.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
3 atcvr0eq.a . . . . . 6 𝐴 = (Atoms‘𝐾)
41, 2, 3atcvr1 39515 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄𝑃𝐶(𝑃 𝑄)))
5 atcvr0eq.z . . . . . . . 8 0 = (0.‘𝐾)
65, 2, 3atcvr0 39386 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴) → 0 𝐶𝑃)
763adant3 1132 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 𝐶𝑃)
87biantrurd 532 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝐶(𝑃 𝑄) ↔ ( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄))))
94, 8bitrd 279 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 ↔ ( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄))))
10 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ HL)
11 hlop 39460 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OP)
12113ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ OP)
13 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1413, 5op0cl 39282 . . . . . 6 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
1512, 14syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 ∈ (Base‘𝐾))
1613, 3atbase 39387 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
17163ad2ant2 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 ∈ (Base‘𝐾))
1813, 1, 3hlatjcl 39465 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
1913, 2cvrntr 39523 . . . . 5 ((𝐾 ∈ HL ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → (( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄)) → ¬ 0 𝐶(𝑃 𝑄)))
2010, 15, 17, 18, 19syl13anc 1374 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (( 0 𝐶𝑃𝑃𝐶(𝑃 𝑄)) → ¬ 0 𝐶(𝑃 𝑄)))
219, 20sylbid 240 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → ¬ 0 𝐶(𝑃 𝑄)))
2221necon4ad 2947 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) → 𝑃 = 𝑄))
231, 3hlatjidm 39467 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑃 𝑃) = 𝑃)
24233adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑃) = 𝑃)
257, 24breqtrrd 5117 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 0 𝐶(𝑃 𝑃))
26 oveq2 7354 . . . 4 (𝑃 = 𝑄 → (𝑃 𝑃) = (𝑃 𝑄))
2726breq2d 5101 . . 3 (𝑃 = 𝑄 → ( 0 𝐶(𝑃 𝑃) ↔ 0 𝐶(𝑃 𝑄)))
2825, 27syl5ibcom 245 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄0 𝐶(𝑃 𝑄)))
2922, 28impbid 212 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ( 0 𝐶(𝑃 𝑄) ↔ 𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  joincjn 18217  0.cp0 18327  OPcops 39270  ccvr 39360  Atomscatm 39361  HLchlt 39448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449
This theorem is referenced by:  atcvrj0  39526
  Copyright terms: Public domain W3C validator