MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1finf1oOLD Structured version   Visualization version   GIF version

Theorem f1finf1oOLD 9307
Description: Obsolete version of f1finf1o 9306 as of 4-Jan-2025. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
f1finf1oOLD ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))

Proof of Theorem f1finf1oOLD
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 f1f 6803 . . . . . . 7 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
32adantl 481 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴𝐵)
43ffnd 6736 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
5 simpll 766 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
63frnd 6743 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
7 df-pss 3970 . . . . . . . . . 10 (ran 𝐹𝐵 ↔ (ran 𝐹𝐵 ∧ ran 𝐹𝐵))
87baib 535 . . . . . . . . 9 (ran 𝐹𝐵 → (ran 𝐹𝐵 ↔ ran 𝐹𝐵))
96, 8syl 17 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 ↔ ran 𝐹𝐵))
10 simplr 768 . . . . . . . . . . . . 13 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐵 ∈ Fin)
11 relen 8991 . . . . . . . . . . . . . . 15 Rel ≈
1211brrelex1i 5740 . . . . . . . . . . . . . 14 (𝐴𝐵𝐴 ∈ V)
135, 12syl 17 . . . . . . . . . . . . 13 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ V)
1410, 13elmapd 8881 . . . . . . . . . . . 12 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
153, 14mpbird 257 . . . . . . . . . . 11 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ (𝐵m 𝐴))
16 f1f1orn 6858 . . . . . . . . . . . 12 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
1716adantl 481 . . . . . . . . . . 11 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
18 f1oen3g 9008 . . . . . . . . . . 11 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐹:𝐴1-1-onto→ran 𝐹) → 𝐴 ≈ ran 𝐹)
1915, 17, 18syl2anc 584 . . . . . . . . . 10 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ≈ ran 𝐹)
20 php3 9250 . . . . . . . . . . . 12 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹𝐵)
2120ex 412 . . . . . . . . . . 11 (𝐵 ∈ Fin → (ran 𝐹𝐵 → ran 𝐹𝐵))
2210, 21syl 17 . . . . . . . . . 10 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ran 𝐹𝐵))
23 ensdomtr 9154 . . . . . . . . . 10 ((𝐴 ≈ ran 𝐹 ∧ ran 𝐹𝐵) → 𝐴𝐵)
2419, 22, 23syl6an 684 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵𝐴𝐵))
25 sdomnen 9022 . . . . . . . . 9 (𝐴𝐵 → ¬ 𝐴𝐵)
2624, 25syl6 35 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ¬ 𝐴𝐵))
279, 26sylbird 260 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ¬ 𝐴𝐵))
2827necon4ad 2958 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐴𝐵 → ran 𝐹 = 𝐵))
295, 28mpd 15 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 = 𝐵)
30 df-fo 6566 . . . . 5 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
314, 29, 30sylanbrc 583 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴onto𝐵)
32 df-f1o 6567 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
331, 31, 32sylanbrc 583 . . 3 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto𝐵)
3433ex 412 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
35 f1of1 6846 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
3634, 35impbid1 225 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  wss 3950  wpss 3951   class class class wbr 5142  ran crn 5685   Fn wfn 6555  wf 6556  1-1wf1 6557  ontowfo 6558  1-1-ontowf1o 6559  (class class class)co 7432  m cmap 8867  cen 8983  csdm 8985  Fincfn 8986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator