![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qextle | Structured version Visualization version GIF version |
Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
qextle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
2 | 1 | ralrimivw 3150 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
3 | xrlttri2 13125 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
4 | qextltlem 13185 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | |
5 | simpr 485 | . . . . . . . 8 ⊢ ((¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
6 | 5 | reximi 3084 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
7 | 4, 6 | syl6 35 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
8 | qextltlem 13185 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)))) | |
9 | simpr 485 | . . . . . . . . . 10 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) | |
10 | bicom 221 | . . . . . . . . . 10 ⊢ ((𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴) ↔ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
11 | 9, 10 | sylnib 327 | . . . . . . . . 9 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
12 | 11 | reximi 3084 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
13 | 8, 12 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
14 | 13 | ancoms 459 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
15 | 7, 14 | jaod 857 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
16 | 3, 15 | sylbid 239 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
17 | rexnal 3100 | . . . 4 ⊢ (∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵) ↔ ¬ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
18 | 16, 17 | imbitrdi 250 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ¬ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
19 | 18 | necon4ad 2959 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵) → 𝐴 = 𝐵)) |
20 | 2, 19 | impbid2 225 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 class class class wbr 5148 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 ℚcq 12936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |