MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qextle Structured version   Visualization version   GIF version

Theorem qextle 13218
Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
qextle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qextle
StepHypRef Expression
1 breq2 5153 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21ralrimivw 3139 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵))
3 xrlttri2 13156 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
4 qextltlem 13216 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
5 simpr 483 . . . . . . . 8 ((¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)) → ¬ (𝑥𝐴𝑥𝐵))
65reximi 3073 . . . . . . 7 (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)) → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵))
74, 6syl6 35 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
8 qextltlem 13216 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴))))
9 simpr 483 . . . . . . . . . 10 ((¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ¬ (𝑥𝐵𝑥𝐴))
10 bicom 221 . . . . . . . . . 10 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐴𝑥𝐵))
119, 10sylnib 327 . . . . . . . . 9 ((¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ¬ (𝑥𝐴𝑥𝐵))
1211reximi 3073 . . . . . . . 8 (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵))
138, 12syl6 35 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
1413ancoms 457 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
157, 14jaod 857 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐴) → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
163, 15sylbid 239 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
17 rexnal 3089 . . . 4 (∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵) ↔ ¬ ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵))
1816, 17imbitrdi 250 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ¬ ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵)))
1918necon4ad 2948 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵) → 𝐴 = 𝐵))
202, 19impbid2 225 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059   class class class wbr 5149  *cxr 11279   < clt 11280  cle 11281  cq 12965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator