| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qextle | Structured version Visualization version GIF version | ||
| Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| qextle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5095 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
| 2 | 1 | ralrimivw 3128 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
| 3 | xrlttri2 13038 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 4 | qextltlem 13098 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | |
| 5 | simpr 484 | . . . . . . . 8 ⊢ ((¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
| 6 | 5 | reximi 3070 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
| 7 | 4, 6 | syl6 35 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| 8 | qextltlem 13098 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)))) | |
| 9 | simpr 484 | . . . . . . . . . 10 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) | |
| 10 | bicom 222 | . . . . . . . . . 10 ⊢ ((𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴) ↔ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
| 11 | 9, 10 | sylnib 328 | . . . . . . . . 9 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
| 12 | 11 | reximi 3070 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) |
| 13 | 8, 12 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| 14 | 13 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| 15 | 7, 14 | jaod 859 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| 16 | 3, 15 | sylbid 240 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| 17 | rexnal 3084 | . . . 4 ⊢ (∃𝑥 ∈ ℚ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵) ↔ ¬ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) | |
| 18 | 16, 17 | imbitrdi 251 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ¬ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| 19 | 18 | necon4ad 2947 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵) → 𝐴 = 𝐵)) |
| 20 | 2, 19 | impbid2 226 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 class class class wbr 5091 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 ℚcq 12843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |