MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qextle Structured version   Visualization version   GIF version

Theorem qextle 13246
Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
qextle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qextle
StepHypRef Expression
1 breq2 5147 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21ralrimivw 3150 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵))
3 xrlttri2 13184 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
4 qextltlem 13244 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
5 simpr 484 . . . . . . . 8 ((¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)) → ¬ (𝑥𝐴𝑥𝐵))
65reximi 3084 . . . . . . 7 (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)) → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵))
74, 6syl6 35 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
8 qextltlem 13244 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴))))
9 simpr 484 . . . . . . . . . 10 ((¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ¬ (𝑥𝐵𝑥𝐴))
10 bicom 222 . . . . . . . . . 10 ((𝑥𝐵𝑥𝐴) ↔ (𝑥𝐴𝑥𝐵))
119, 10sylnib 328 . . . . . . . . 9 ((¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ¬ (𝑥𝐴𝑥𝐵))
1211reximi 3084 . . . . . . . 8 (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵))
138, 12syl6 35 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
1413ancoms 458 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
157, 14jaod 860 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐴) → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
163, 15sylbid 240 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵)))
17 rexnal 3100 . . . 4 (∃𝑥 ∈ ℚ ¬ (𝑥𝐴𝑥𝐵) ↔ ¬ ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵))
1816, 17imbitrdi 251 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ¬ ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵)))
1918necon4ad 2959 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵) → 𝐴 = 𝐵))
202, 19impbid2 226 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070   class class class wbr 5143  *cxr 11294   < clt 11295  cle 11296  cq 12990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator