| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv0eq | Structured version Visualization version GIF version | ||
| Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 32359 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcv0eq.o | ⊢ 0 = (0g‘𝑊) |
| lsatcv0eq.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcv0eq.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcv0eq.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lsatcv0eq.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcv0eq.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcv0eq.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lsatcv0eq | ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcv0eq.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 2 | lsatcv0eq.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 3 | lsatcv0eq.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lsatcv0eq.q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 5 | lsatcv0eq.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | lsatnem0 39154 | . . . . 5 ⊢ (𝜑 → (𝑄 ≠ 𝑅 ↔ (𝑄 ∩ 𝑅) = { 0 })) |
| 7 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 8 | lsatcv0eq.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 9 | lsatcv0eq.c | . . . . . 6 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 10 | lveclmod 21040 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 12 | 7, 2, 11, 4 | lsatlssel 39106 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝑊)) |
| 13 | 7, 8, 1, 2, 9, 3, 12, 5 | lcvp 39149 | . . . . 5 ⊢ (𝜑 → ((𝑄 ∩ 𝑅) = { 0 } ↔ 𝑄𝐶(𝑄 ⊕ 𝑅))) |
| 14 | 1, 2, 9, 3, 4 | lsatcv0 39140 | . . . . . 6 ⊢ (𝜑 → { 0 }𝐶𝑄) |
| 15 | 14 | biantrurd 532 | . . . . 5 ⊢ (𝜑 → (𝑄𝐶(𝑄 ⊕ 𝑅) ↔ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)))) |
| 16 | 6, 13, 15 | 3bitrd 305 | . . . 4 ⊢ (𝜑 → (𝑄 ≠ 𝑅 ↔ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)))) |
| 17 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑊 ∈ LVec) |
| 18 | 1, 7 | lsssn0 20881 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊)) |
| 19 | 11, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → { 0 } ∈ (LSubSp‘𝑊)) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → { 0 } ∈ (LSubSp‘𝑊)) |
| 21 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑄 ∈ (LSubSp‘𝑊)) |
| 22 | 7, 2, 11, 5 | lsatlssel 39106 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ (LSubSp‘𝑊)) |
| 23 | 7, 8 | lsmcl 21017 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊) ∧ 𝑅 ∈ (LSubSp‘𝑊)) → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
| 24 | 11, 12, 22, 23 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
| 26 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → { 0 }𝐶𝑄) | |
| 27 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑄𝐶(𝑄 ⊕ 𝑅)) | |
| 28 | 7, 9, 17, 20, 21, 25, 26, 27 | lcvntr 39135 | . . . . 5 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅)) |
| 29 | 28 | ex 412 | . . . 4 ⊢ (𝜑 → (({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)) → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 30 | 16, 29 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝑄 ≠ 𝑅 → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 31 | 30 | necon4ad 2947 | . 2 ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) → 𝑄 = 𝑅)) |
| 32 | 7 | lsssssubg 20891 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 33 | 11, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 34 | 33, 12 | sseldd 3930 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 35 | 8 | lsmidm 19575 | . . . . 5 ⊢ (𝑄 ∈ (SubGrp‘𝑊) → (𝑄 ⊕ 𝑄) = 𝑄) |
| 36 | 34, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑄 ⊕ 𝑄) = 𝑄) |
| 37 | 14, 36 | breqtrrd 5117 | . . 3 ⊢ (𝜑 → { 0 }𝐶(𝑄 ⊕ 𝑄)) |
| 38 | oveq2 7354 | . . . 4 ⊢ (𝑄 = 𝑅 → (𝑄 ⊕ 𝑄) = (𝑄 ⊕ 𝑅)) | |
| 39 | 38 | breq2d 5101 | . . 3 ⊢ (𝑄 = 𝑅 → ({ 0 }𝐶(𝑄 ⊕ 𝑄) ↔ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 40 | 37, 39 | syl5ibcom 245 | . 2 ⊢ (𝜑 → (𝑄 = 𝑅 → { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 41 | 31, 40 | impbid 212 | 1 ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ⊆ wss 3897 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0gc0g 17343 SubGrpcsubg 19033 LSSumclsm 19546 LModclmod 20793 LSubSpclss 20864 LVecclvec 21036 LSAtomsclsa 39083 ⋖L clcv 39127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-oppg 19258 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lsatoms 39085 df-lcv 39128 |
| This theorem is referenced by: lsatcv1 39157 |
| Copyright terms: Public domain | W3C validator |