![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv0eq | Structured version Visualization version GIF version |
Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 32141 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcv0eq.o | β’ 0 = (0gβπ) |
lsatcv0eq.p | β’ β = (LSSumβπ) |
lsatcv0eq.a | β’ π΄ = (LSAtomsβπ) |
lsatcv0eq.c | β’ πΆ = ( βL βπ) |
lsatcv0eq.w | β’ (π β π β LVec) |
lsatcv0eq.q | β’ (π β π β π΄) |
lsatcv0eq.r | β’ (π β π β π΄) |
Ref | Expression |
---|---|
lsatcv0eq | β’ (π β ({ 0 }πΆ(π β π ) β π = π )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcv0eq.o | . . . . . 6 β’ 0 = (0gβπ) | |
2 | lsatcv0eq.a | . . . . . 6 β’ π΄ = (LSAtomsβπ) | |
3 | lsatcv0eq.w | . . . . . 6 β’ (π β π β LVec) | |
4 | lsatcv0eq.q | . . . . . 6 β’ (π β π β π΄) | |
5 | lsatcv0eq.r | . . . . . 6 β’ (π β π β π΄) | |
6 | 1, 2, 3, 4, 5 | lsatnem0 38428 | . . . . 5 β’ (π β (π β π β (π β© π ) = { 0 })) |
7 | eqid 2726 | . . . . . 6 β’ (LSubSpβπ) = (LSubSpβπ) | |
8 | lsatcv0eq.p | . . . . . 6 β’ β = (LSSumβπ) | |
9 | lsatcv0eq.c | . . . . . 6 β’ πΆ = ( βL βπ) | |
10 | lveclmod 20954 | . . . . . . . 8 β’ (π β LVec β π β LMod) | |
11 | 3, 10 | syl 17 | . . . . . . 7 β’ (π β π β LMod) |
12 | 7, 2, 11, 4 | lsatlssel 38380 | . . . . . 6 β’ (π β π β (LSubSpβπ)) |
13 | 7, 8, 1, 2, 9, 3, 12, 5 | lcvp 38423 | . . . . 5 β’ (π β ((π β© π ) = { 0 } β ππΆ(π β π ))) |
14 | 1, 2, 9, 3, 4 | lsatcv0 38414 | . . . . . 6 β’ (π β { 0 }πΆπ) |
15 | 14 | biantrurd 532 | . . . . 5 β’ (π β (ππΆ(π β π ) β ({ 0 }πΆπ β§ ππΆ(π β π )))) |
16 | 6, 13, 15 | 3bitrd 305 | . . . 4 β’ (π β (π β π β ({ 0 }πΆπ β§ ππΆ(π β π )))) |
17 | 3 | adantr 480 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β π β LVec) |
18 | 1, 7 | lsssn0 20795 | . . . . . . . 8 β’ (π β LMod β { 0 } β (LSubSpβπ)) |
19 | 11, 18 | syl 17 | . . . . . . 7 β’ (π β { 0 } β (LSubSpβπ)) |
20 | 19 | adantr 480 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β { 0 } β (LSubSpβπ)) |
21 | 12 | adantr 480 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β π β (LSubSpβπ)) |
22 | 7, 2, 11, 5 | lsatlssel 38380 | . . . . . . . 8 β’ (π β π β (LSubSpβπ)) |
23 | 7, 8 | lsmcl 20931 | . . . . . . . 8 β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β (LSubSpβπ)) β (π β π ) β (LSubSpβπ)) |
24 | 11, 12, 22, 23 | syl3anc 1368 | . . . . . . 7 β’ (π β (π β π ) β (LSubSpβπ)) |
25 | 24 | adantr 480 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β (π β π ) β (LSubSpβπ)) |
26 | simprl 768 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β { 0 }πΆπ) | |
27 | simprr 770 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β ππΆ(π β π )) | |
28 | 7, 9, 17, 20, 21, 25, 26, 27 | lcvntr 38409 | . . . . 5 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β Β¬ { 0 }πΆ(π β π )) |
29 | 28 | ex 412 | . . . 4 β’ (π β (({ 0 }πΆπ β§ ππΆ(π β π )) β Β¬ { 0 }πΆ(π β π ))) |
30 | 16, 29 | sylbid 239 | . . 3 β’ (π β (π β π β Β¬ { 0 }πΆ(π β π ))) |
31 | 30 | necon4ad 2953 | . 2 β’ (π β ({ 0 }πΆ(π β π ) β π = π )) |
32 | 7 | lsssssubg 20805 | . . . . . . 7 β’ (π β LMod β (LSubSpβπ) β (SubGrpβπ)) |
33 | 11, 32 | syl 17 | . . . . . 6 β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
34 | 33, 12 | sseldd 3978 | . . . . 5 β’ (π β π β (SubGrpβπ)) |
35 | 8 | lsmidm 19583 | . . . . 5 β’ (π β (SubGrpβπ) β (π β π) = π) |
36 | 34, 35 | syl 17 | . . . 4 β’ (π β (π β π) = π) |
37 | 14, 36 | breqtrrd 5169 | . . 3 β’ (π β { 0 }πΆ(π β π)) |
38 | oveq2 7413 | . . . 4 β’ (π = π β (π β π) = (π β π )) | |
39 | 38 | breq2d 5153 | . . 3 β’ (π = π β ({ 0 }πΆ(π β π) β { 0 }πΆ(π β π ))) |
40 | 37, 39 | syl5ibcom 244 | . 2 β’ (π β (π = π β { 0 }πΆ(π β π ))) |
41 | 31, 40 | impbid 211 | 1 β’ (π β ({ 0 }πΆ(π β π ) β π = π )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β© cin 3942 β wss 3943 {csn 4623 class class class wbr 5141 βcfv 6537 (class class class)co 7405 0gc0g 17394 SubGrpcsubg 19047 LSSumclsm 19554 LModclmod 20706 LSubSpclss 20778 LVecclvec 20950 LSAtomsclsa 38357 βL clcv 38401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-0g 17396 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-cntz 19233 df-oppg 19262 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-drng 20589 df-lmod 20708 df-lss 20779 df-lsp 20819 df-lvec 20951 df-lsatoms 38359 df-lcv 38402 |
This theorem is referenced by: lsatcv1 38431 |
Copyright terms: Public domain | W3C validator |