Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0eq Structured version   Visualization version   GIF version

Theorem lsatcv0eq 39070
Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 32365 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0eq.o 0 = (0g𝑊)
lsatcv0eq.p = (LSSum‘𝑊)
lsatcv0eq.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0eq.c 𝐶 = ( ⋖L𝑊)
lsatcv0eq.w (𝜑𝑊 ∈ LVec)
lsatcv0eq.q (𝜑𝑄𝐴)
lsatcv0eq.r (𝜑𝑅𝐴)
Assertion
Ref Expression
lsatcv0eq (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))

Proof of Theorem lsatcv0eq
StepHypRef Expression
1 lsatcv0eq.o . . . . . 6 0 = (0g𝑊)
2 lsatcv0eq.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
3 lsatcv0eq.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lsatcv0eq.q . . . . . 6 (𝜑𝑄𝐴)
5 lsatcv0eq.r . . . . . 6 (𝜑𝑅𝐴)
61, 2, 3, 4, 5lsatnem0 39068 . . . . 5 (𝜑 → (𝑄𝑅 ↔ (𝑄𝑅) = { 0 }))
7 eqid 2736 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
8 lsatcv0eq.p . . . . . 6 = (LSSum‘𝑊)
9 lsatcv0eq.c . . . . . 6 𝐶 = ( ⋖L𝑊)
10 lveclmod 21069 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
113, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
127, 2, 11, 4lsatlssel 39020 . . . . . 6 (𝜑𝑄 ∈ (LSubSp‘𝑊))
137, 8, 1, 2, 9, 3, 12, 5lcvp 39063 . . . . 5 (𝜑 → ((𝑄𝑅) = { 0 } ↔ 𝑄𝐶(𝑄 𝑅)))
141, 2, 9, 3, 4lsatcv0 39054 . . . . . 6 (𝜑 → { 0 }𝐶𝑄)
1514biantrurd 532 . . . . 5 (𝜑 → (𝑄𝐶(𝑄 𝑅) ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
166, 13, 153bitrd 305 . . . 4 (𝜑 → (𝑄𝑅 ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
173adantr 480 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑊 ∈ LVec)
181, 7lsssn0 20910 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
1911, 18syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
2019adantr 480 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 } ∈ (LSubSp‘𝑊))
2112adantr 480 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄 ∈ (LSubSp‘𝑊))
227, 2, 11, 5lsatlssel 39020 . . . . . . . 8 (𝜑𝑅 ∈ (LSubSp‘𝑊))
237, 8lsmcl 21046 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊) ∧ 𝑅 ∈ (LSubSp‘𝑊)) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2411, 12, 22, 23syl3anc 1373 . . . . . . 7 (𝜑 → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2524adantr 480 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
26 simprl 770 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 }𝐶𝑄)
27 simprr 772 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄𝐶(𝑄 𝑅))
287, 9, 17, 20, 21, 25, 26, 27lcvntr 39049 . . . . 5 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → ¬ { 0 }𝐶(𝑄 𝑅))
2928ex 412 . . . 4 (𝜑 → (({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅)) → ¬ { 0 }𝐶(𝑄 𝑅)))
3016, 29sylbid 240 . . 3 (𝜑 → (𝑄𝑅 → ¬ { 0 }𝐶(𝑄 𝑅)))
3130necon4ad 2952 . 2 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) → 𝑄 = 𝑅))
327lsssssubg 20920 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3311, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3433, 12sseldd 3964 . . . . 5 (𝜑𝑄 ∈ (SubGrp‘𝑊))
358lsmidm 19649 . . . . 5 (𝑄 ∈ (SubGrp‘𝑊) → (𝑄 𝑄) = 𝑄)
3634, 35syl 17 . . . 4 (𝜑 → (𝑄 𝑄) = 𝑄)
3714, 36breqtrrd 5152 . . 3 (𝜑 → { 0 }𝐶(𝑄 𝑄))
38 oveq2 7418 . . . 4 (𝑄 = 𝑅 → (𝑄 𝑄) = (𝑄 𝑅))
3938breq2d 5136 . . 3 (𝑄 = 𝑅 → ({ 0 }𝐶(𝑄 𝑄) ↔ { 0 }𝐶(𝑄 𝑅)))
4037, 39syl5ibcom 245 . 2 (𝜑 → (𝑄 = 𝑅 → { 0 }𝐶(𝑄 𝑅)))
4131, 40impbid 212 1 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  cin 3930  wss 3931  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410  0gc0g 17458  SubGrpcsubg 19108  LSSumclsm 19620  LModclmod 20822  LSubSpclss 20893  LVecclvec 21065  LSAtomsclsa 38997  L clcv 39041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066  df-lsatoms 38999  df-lcv 39042
This theorem is referenced by:  lsatcv1  39071
  Copyright terms: Public domain W3C validator