Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv0eq | Structured version Visualization version GIF version |
Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 30642 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcv0eq.o | ⊢ 0 = (0g‘𝑊) |
lsatcv0eq.p | ⊢ ⊕ = (LSSum‘𝑊) |
lsatcv0eq.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatcv0eq.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lsatcv0eq.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatcv0eq.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lsatcv0eq.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
Ref | Expression |
---|---|
lsatcv0eq | ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcv0eq.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
2 | lsatcv0eq.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
3 | lsatcv0eq.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lsatcv0eq.q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
5 | lsatcv0eq.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
6 | 1, 2, 3, 4, 5 | lsatnem0 36986 | . . . . 5 ⊢ (𝜑 → (𝑄 ≠ 𝑅 ↔ (𝑄 ∩ 𝑅) = { 0 })) |
7 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
8 | lsatcv0eq.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
9 | lsatcv0eq.c | . . . . . 6 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
10 | lveclmod 20283 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) |
12 | 7, 2, 11, 4 | lsatlssel 36938 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝑊)) |
13 | 7, 8, 1, 2, 9, 3, 12, 5 | lcvp 36981 | . . . . 5 ⊢ (𝜑 → ((𝑄 ∩ 𝑅) = { 0 } ↔ 𝑄𝐶(𝑄 ⊕ 𝑅))) |
14 | 1, 2, 9, 3, 4 | lsatcv0 36972 | . . . . . 6 ⊢ (𝜑 → { 0 }𝐶𝑄) |
15 | 14 | biantrurd 532 | . . . . 5 ⊢ (𝜑 → (𝑄𝐶(𝑄 ⊕ 𝑅) ↔ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)))) |
16 | 6, 13, 15 | 3bitrd 304 | . . . 4 ⊢ (𝜑 → (𝑄 ≠ 𝑅 ↔ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)))) |
17 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑊 ∈ LVec) |
18 | 1, 7 | lsssn0 20124 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊)) |
19 | 11, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → { 0 } ∈ (LSubSp‘𝑊)) |
20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → { 0 } ∈ (LSubSp‘𝑊)) |
21 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑄 ∈ (LSubSp‘𝑊)) |
22 | 7, 2, 11, 5 | lsatlssel 36938 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ (LSubSp‘𝑊)) |
23 | 7, 8 | lsmcl 20260 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊) ∧ 𝑅 ∈ (LSubSp‘𝑊)) → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
24 | 11, 12, 22, 23 | syl3anc 1369 | . . . . . . 7 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
26 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → { 0 }𝐶𝑄) | |
27 | simprr 769 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑄𝐶(𝑄 ⊕ 𝑅)) | |
28 | 7, 9, 17, 20, 21, 25, 26, 27 | lcvntr 36967 | . . . . 5 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅)) |
29 | 28 | ex 412 | . . . 4 ⊢ (𝜑 → (({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)) → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
30 | 16, 29 | sylbid 239 | . . 3 ⊢ (𝜑 → (𝑄 ≠ 𝑅 → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
31 | 30 | necon4ad 2961 | . 2 ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) → 𝑄 = 𝑅)) |
32 | 7 | lsssssubg 20135 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
33 | 11, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
34 | 33, 12 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
35 | 8 | lsmidm 19183 | . . . . 5 ⊢ (𝑄 ∈ (SubGrp‘𝑊) → (𝑄 ⊕ 𝑄) = 𝑄) |
36 | 34, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑄 ⊕ 𝑄) = 𝑄) |
37 | 14, 36 | breqtrrd 5098 | . . 3 ⊢ (𝜑 → { 0 }𝐶(𝑄 ⊕ 𝑄)) |
38 | oveq2 7263 | . . . 4 ⊢ (𝑄 = 𝑅 → (𝑄 ⊕ 𝑄) = (𝑄 ⊕ 𝑅)) | |
39 | 38 | breq2d 5082 | . . 3 ⊢ (𝑄 = 𝑅 → ({ 0 }𝐶(𝑄 ⊕ 𝑄) ↔ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
40 | 37, 39 | syl5ibcom 244 | . 2 ⊢ (𝜑 → (𝑄 = 𝑅 → { 0 }𝐶(𝑄 ⊕ 𝑅))) |
41 | 31, 40 | impbid 211 | 1 ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 {csn 4558 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0gc0g 17067 SubGrpcsubg 18664 LSSumclsm 19154 LModclmod 20038 LSubSpclss 20108 LVecclvec 20279 LSAtomsclsa 36915 ⋖L clcv 36959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lcv 36960 |
This theorem is referenced by: lsatcv1 36989 |
Copyright terms: Public domain | W3C validator |