| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv0eq | Structured version Visualization version GIF version | ||
| Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 32358 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsatcv0eq.o | ⊢ 0 = (0g‘𝑊) |
| lsatcv0eq.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lsatcv0eq.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsatcv0eq.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lsatcv0eq.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lsatcv0eq.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lsatcv0eq.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lsatcv0eq | ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsatcv0eq.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 2 | lsatcv0eq.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 3 | lsatcv0eq.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lsatcv0eq.q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 5 | lsatcv0eq.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | lsatnem0 39031 | . . . . 5 ⊢ (𝜑 → (𝑄 ≠ 𝑅 ↔ (𝑄 ∩ 𝑅) = { 0 })) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 8 | lsatcv0eq.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 9 | lsatcv0eq.c | . . . . . 6 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 10 | lveclmod 21045 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 11 | 3, 10 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 12 | 7, 2, 11, 4 | lsatlssel 38983 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (LSubSp‘𝑊)) |
| 13 | 7, 8, 1, 2, 9, 3, 12, 5 | lcvp 39026 | . . . . 5 ⊢ (𝜑 → ((𝑄 ∩ 𝑅) = { 0 } ↔ 𝑄𝐶(𝑄 ⊕ 𝑅))) |
| 14 | 1, 2, 9, 3, 4 | lsatcv0 39017 | . . . . . 6 ⊢ (𝜑 → { 0 }𝐶𝑄) |
| 15 | 14 | biantrurd 532 | . . . . 5 ⊢ (𝜑 → (𝑄𝐶(𝑄 ⊕ 𝑅) ↔ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)))) |
| 16 | 6, 13, 15 | 3bitrd 305 | . . . 4 ⊢ (𝜑 → (𝑄 ≠ 𝑅 ↔ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)))) |
| 17 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑊 ∈ LVec) |
| 18 | 1, 7 | lsssn0 20886 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊)) |
| 19 | 11, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → { 0 } ∈ (LSubSp‘𝑊)) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → { 0 } ∈ (LSubSp‘𝑊)) |
| 21 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑄 ∈ (LSubSp‘𝑊)) |
| 22 | 7, 2, 11, 5 | lsatlssel 38983 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ (LSubSp‘𝑊)) |
| 23 | 7, 8 | lsmcl 21022 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊) ∧ 𝑅 ∈ (LSubSp‘𝑊)) → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
| 24 | 11, 12, 22, 23 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → (𝑄 ⊕ 𝑅) ∈ (LSubSp‘𝑊)) |
| 26 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → { 0 }𝐶𝑄) | |
| 27 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → 𝑄𝐶(𝑄 ⊕ 𝑅)) | |
| 28 | 7, 9, 17, 20, 21, 25, 26, 27 | lcvntr 39012 | . . . . 5 ⊢ ((𝜑 ∧ ({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅))) → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅)) |
| 29 | 28 | ex 412 | . . . 4 ⊢ (𝜑 → (({ 0 }𝐶𝑄 ∧ 𝑄𝐶(𝑄 ⊕ 𝑅)) → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 30 | 16, 29 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝑄 ≠ 𝑅 → ¬ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 31 | 30 | necon4ad 2944 | . 2 ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) → 𝑄 = 𝑅)) |
| 32 | 7 | lsssssubg 20896 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 33 | 11, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 34 | 33, 12 | sseldd 3944 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (SubGrp‘𝑊)) |
| 35 | 8 | lsmidm 19577 | . . . . 5 ⊢ (𝑄 ∈ (SubGrp‘𝑊) → (𝑄 ⊕ 𝑄) = 𝑄) |
| 36 | 34, 35 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑄 ⊕ 𝑄) = 𝑄) |
| 37 | 14, 36 | breqtrrd 5130 | . . 3 ⊢ (𝜑 → { 0 }𝐶(𝑄 ⊕ 𝑄)) |
| 38 | oveq2 7377 | . . . 4 ⊢ (𝑄 = 𝑅 → (𝑄 ⊕ 𝑄) = (𝑄 ⊕ 𝑅)) | |
| 39 | 38 | breq2d 5114 | . . 3 ⊢ (𝑄 = 𝑅 → ({ 0 }𝐶(𝑄 ⊕ 𝑄) ↔ { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 40 | 37, 39 | syl5ibcom 245 | . 2 ⊢ (𝜑 → (𝑄 = 𝑅 → { 0 }𝐶(𝑄 ⊕ 𝑅))) |
| 41 | 31, 40 | impbid 212 | 1 ⊢ (𝜑 → ({ 0 }𝐶(𝑄 ⊕ 𝑅) ↔ 𝑄 = 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3910 ⊆ wss 3911 {csn 4585 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0gc0g 17378 SubGrpcsubg 19034 LSSumclsm 19548 LModclmod 20798 LSubSpclss 20869 LVecclvec 21041 LSAtomsclsa 38960 ⋖L clcv 39004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-0g 17380 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-cntz 19231 df-oppg 19260 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-drng 20651 df-lmod 20800 df-lss 20870 df-lsp 20910 df-lvec 21042 df-lsatoms 38962 df-lcv 39005 |
| This theorem is referenced by: lsatcv1 39034 |
| Copyright terms: Public domain | W3C validator |