![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatcv0eq | Structured version Visualization version GIF version |
Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 31619 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatcv0eq.o | β’ 0 = (0gβπ) |
lsatcv0eq.p | β’ β = (LSSumβπ) |
lsatcv0eq.a | β’ π΄ = (LSAtomsβπ) |
lsatcv0eq.c | β’ πΆ = ( βL βπ) |
lsatcv0eq.w | β’ (π β π β LVec) |
lsatcv0eq.q | β’ (π β π β π΄) |
lsatcv0eq.r | β’ (π β π β π΄) |
Ref | Expression |
---|---|
lsatcv0eq | β’ (π β ({ 0 }πΆ(π β π ) β π = π )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatcv0eq.o | . . . . . 6 β’ 0 = (0gβπ) | |
2 | lsatcv0eq.a | . . . . . 6 β’ π΄ = (LSAtomsβπ) | |
3 | lsatcv0eq.w | . . . . . 6 β’ (π β π β LVec) | |
4 | lsatcv0eq.q | . . . . . 6 β’ (π β π β π΄) | |
5 | lsatcv0eq.r | . . . . . 6 β’ (π β π β π΄) | |
6 | 1, 2, 3, 4, 5 | lsatnem0 37903 | . . . . 5 β’ (π β (π β π β (π β© π ) = { 0 })) |
7 | eqid 2732 | . . . . . 6 β’ (LSubSpβπ) = (LSubSpβπ) | |
8 | lsatcv0eq.p | . . . . . 6 β’ β = (LSSumβπ) | |
9 | lsatcv0eq.c | . . . . . 6 β’ πΆ = ( βL βπ) | |
10 | lveclmod 20709 | . . . . . . . 8 β’ (π β LVec β π β LMod) | |
11 | 3, 10 | syl 17 | . . . . . . 7 β’ (π β π β LMod) |
12 | 7, 2, 11, 4 | lsatlssel 37855 | . . . . . 6 β’ (π β π β (LSubSpβπ)) |
13 | 7, 8, 1, 2, 9, 3, 12, 5 | lcvp 37898 | . . . . 5 β’ (π β ((π β© π ) = { 0 } β ππΆ(π β π ))) |
14 | 1, 2, 9, 3, 4 | lsatcv0 37889 | . . . . . 6 β’ (π β { 0 }πΆπ) |
15 | 14 | biantrurd 533 | . . . . 5 β’ (π β (ππΆ(π β π ) β ({ 0 }πΆπ β§ ππΆ(π β π )))) |
16 | 6, 13, 15 | 3bitrd 304 | . . . 4 β’ (π β (π β π β ({ 0 }πΆπ β§ ππΆ(π β π )))) |
17 | 3 | adantr 481 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β π β LVec) |
18 | 1, 7 | lsssn0 20550 | . . . . . . . 8 β’ (π β LMod β { 0 } β (LSubSpβπ)) |
19 | 11, 18 | syl 17 | . . . . . . 7 β’ (π β { 0 } β (LSubSpβπ)) |
20 | 19 | adantr 481 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β { 0 } β (LSubSpβπ)) |
21 | 12 | adantr 481 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β π β (LSubSpβπ)) |
22 | 7, 2, 11, 5 | lsatlssel 37855 | . . . . . . . 8 β’ (π β π β (LSubSpβπ)) |
23 | 7, 8 | lsmcl 20686 | . . . . . . . 8 β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β (LSubSpβπ)) β (π β π ) β (LSubSpβπ)) |
24 | 11, 12, 22, 23 | syl3anc 1371 | . . . . . . 7 β’ (π β (π β π ) β (LSubSpβπ)) |
25 | 24 | adantr 481 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β (π β π ) β (LSubSpβπ)) |
26 | simprl 769 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β { 0 }πΆπ) | |
27 | simprr 771 | . . . . . 6 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β ππΆ(π β π )) | |
28 | 7, 9, 17, 20, 21, 25, 26, 27 | lcvntr 37884 | . . . . 5 β’ ((π β§ ({ 0 }πΆπ β§ ππΆ(π β π ))) β Β¬ { 0 }πΆ(π β π )) |
29 | 28 | ex 413 | . . . 4 β’ (π β (({ 0 }πΆπ β§ ππΆ(π β π )) β Β¬ { 0 }πΆ(π β π ))) |
30 | 16, 29 | sylbid 239 | . . 3 β’ (π β (π β π β Β¬ { 0 }πΆ(π β π ))) |
31 | 30 | necon4ad 2959 | . 2 β’ (π β ({ 0 }πΆ(π β π ) β π = π )) |
32 | 7 | lsssssubg 20561 | . . . . . . 7 β’ (π β LMod β (LSubSpβπ) β (SubGrpβπ)) |
33 | 11, 32 | syl 17 | . . . . . 6 β’ (π β (LSubSpβπ) β (SubGrpβπ)) |
34 | 33, 12 | sseldd 3982 | . . . . 5 β’ (π β π β (SubGrpβπ)) |
35 | 8 | lsmidm 19525 | . . . . 5 β’ (π β (SubGrpβπ) β (π β π) = π) |
36 | 34, 35 | syl 17 | . . . 4 β’ (π β (π β π) = π) |
37 | 14, 36 | breqtrrd 5175 | . . 3 β’ (π β { 0 }πΆ(π β π)) |
38 | oveq2 7413 | . . . 4 β’ (π = π β (π β π) = (π β π )) | |
39 | 38 | breq2d 5159 | . . 3 β’ (π = π β ({ 0 }πΆ(π β π) β { 0 }πΆ(π β π ))) |
40 | 37, 39 | syl5ibcom 244 | . 2 β’ (π β (π = π β { 0 }πΆ(π β π ))) |
41 | 31, 40 | impbid 211 | 1 β’ (π β ({ 0 }πΆ(π β π ) β π = π )) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β© cin 3946 β wss 3947 {csn 4627 class class class wbr 5147 βcfv 6540 (class class class)co 7405 0gc0g 17381 SubGrpcsubg 18994 LSSumclsm 19496 LModclmod 20463 LSubSpclss 20534 LVecclvec 20705 LSAtomsclsa 37832 βL clcv 37876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-0g 17383 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-cntz 19175 df-oppg 19204 df-lsm 19498 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-drng 20309 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lvec 20706 df-lsatoms 37834 df-lcv 37877 |
This theorem is referenced by: lsatcv1 37906 |
Copyright terms: Public domain | W3C validator |