Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0eq Structured version   Visualization version   GIF version

Theorem lsatcv0eq 38745
Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 32312 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0eq.o 0 = (0g𝑊)
lsatcv0eq.p = (LSSum‘𝑊)
lsatcv0eq.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0eq.c 𝐶 = ( ⋖L𝑊)
lsatcv0eq.w (𝜑𝑊 ∈ LVec)
lsatcv0eq.q (𝜑𝑄𝐴)
lsatcv0eq.r (𝜑𝑅𝐴)
Assertion
Ref Expression
lsatcv0eq (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))

Proof of Theorem lsatcv0eq
StepHypRef Expression
1 lsatcv0eq.o . . . . . 6 0 = (0g𝑊)
2 lsatcv0eq.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
3 lsatcv0eq.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lsatcv0eq.q . . . . . 6 (𝜑𝑄𝐴)
5 lsatcv0eq.r . . . . . 6 (𝜑𝑅𝐴)
61, 2, 3, 4, 5lsatnem0 38743 . . . . 5 (𝜑 → (𝑄𝑅 ↔ (𝑄𝑅) = { 0 }))
7 eqid 2726 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
8 lsatcv0eq.p . . . . . 6 = (LSSum‘𝑊)
9 lsatcv0eq.c . . . . . 6 𝐶 = ( ⋖L𝑊)
10 lveclmod 21084 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
113, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
127, 2, 11, 4lsatlssel 38695 . . . . . 6 (𝜑𝑄 ∈ (LSubSp‘𝑊))
137, 8, 1, 2, 9, 3, 12, 5lcvp 38738 . . . . 5 (𝜑 → ((𝑄𝑅) = { 0 } ↔ 𝑄𝐶(𝑄 𝑅)))
141, 2, 9, 3, 4lsatcv0 38729 . . . . . 6 (𝜑 → { 0 }𝐶𝑄)
1514biantrurd 531 . . . . 5 (𝜑 → (𝑄𝐶(𝑄 𝑅) ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
166, 13, 153bitrd 304 . . . 4 (𝜑 → (𝑄𝑅 ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
173adantr 479 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑊 ∈ LVec)
181, 7lsssn0 20925 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
1911, 18syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
2019adantr 479 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 } ∈ (LSubSp‘𝑊))
2112adantr 479 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄 ∈ (LSubSp‘𝑊))
227, 2, 11, 5lsatlssel 38695 . . . . . . . 8 (𝜑𝑅 ∈ (LSubSp‘𝑊))
237, 8lsmcl 21061 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊) ∧ 𝑅 ∈ (LSubSp‘𝑊)) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2411, 12, 22, 23syl3anc 1368 . . . . . . 7 (𝜑 → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2524adantr 479 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
26 simprl 769 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 }𝐶𝑄)
27 simprr 771 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄𝐶(𝑄 𝑅))
287, 9, 17, 20, 21, 25, 26, 27lcvntr 38724 . . . . 5 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → ¬ { 0 }𝐶(𝑄 𝑅))
2928ex 411 . . . 4 (𝜑 → (({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅)) → ¬ { 0 }𝐶(𝑄 𝑅)))
3016, 29sylbid 239 . . 3 (𝜑 → (𝑄𝑅 → ¬ { 0 }𝐶(𝑄 𝑅)))
3130necon4ad 2949 . 2 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) → 𝑄 = 𝑅))
327lsssssubg 20935 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3311, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3433, 12sseldd 3980 . . . . 5 (𝜑𝑄 ∈ (SubGrp‘𝑊))
358lsmidm 19661 . . . . 5 (𝑄 ∈ (SubGrp‘𝑊) → (𝑄 𝑄) = 𝑄)
3634, 35syl 17 . . . 4 (𝜑 → (𝑄 𝑄) = 𝑄)
3714, 36breqtrrd 5181 . . 3 (𝜑 → { 0 }𝐶(𝑄 𝑄))
38 oveq2 7432 . . . 4 (𝑄 = 𝑅 → (𝑄 𝑄) = (𝑄 𝑅))
3938breq2d 5165 . . 3 (𝑄 = 𝑅 → ({ 0 }𝐶(𝑄 𝑄) ↔ { 0 }𝐶(𝑄 𝑅)))
4037, 39syl5ibcom 244 . 2 (𝜑 → (𝑄 = 𝑅 → { 0 }𝐶(𝑄 𝑅)))
4131, 40impbid 211 1 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  cin 3946  wss 3947  {csn 4633   class class class wbr 5153  cfv 6554  (class class class)co 7424  0gc0g 17454  SubGrpcsubg 19114  LSSumclsm 19632  LModclmod 20836  LSubSpclss 20908  LVecclvec 21080  LSAtomsclsa 38672  L clcv 38716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-tpos 8241  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-0g 17456  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-grp 18931  df-minusg 18932  df-sbg 18933  df-subg 19117  df-cntz 19311  df-oppg 19340  df-lsm 19634  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-oppr 20316  df-dvdsr 20339  df-unit 20340  df-invr 20370  df-drng 20709  df-lmod 20838  df-lss 20909  df-lsp 20949  df-lvec 21081  df-lsatoms 38674  df-lcv 38717
This theorem is referenced by:  lsatcv1  38746
  Copyright terms: Public domain W3C validator