Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatcv0eq Structured version   Visualization version   GIF version

Theorem lsatcv0eq 35735
Description: If the sum of two atoms cover the zero subspace, they are equal. (atcv0eq 29843 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lsatcv0eq.o 0 = (0g𝑊)
lsatcv0eq.p = (LSSum‘𝑊)
lsatcv0eq.a 𝐴 = (LSAtoms‘𝑊)
lsatcv0eq.c 𝐶 = ( ⋖L𝑊)
lsatcv0eq.w (𝜑𝑊 ∈ LVec)
lsatcv0eq.q (𝜑𝑄𝐴)
lsatcv0eq.r (𝜑𝑅𝐴)
Assertion
Ref Expression
lsatcv0eq (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))

Proof of Theorem lsatcv0eq
StepHypRef Expression
1 lsatcv0eq.o . . . . . 6 0 = (0g𝑊)
2 lsatcv0eq.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
3 lsatcv0eq.w . . . . . 6 (𝜑𝑊 ∈ LVec)
4 lsatcv0eq.q . . . . . 6 (𝜑𝑄𝐴)
5 lsatcv0eq.r . . . . . 6 (𝜑𝑅𝐴)
61, 2, 3, 4, 5lsatnem0 35733 . . . . 5 (𝜑 → (𝑄𝑅 ↔ (𝑄𝑅) = { 0 }))
7 eqid 2797 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
8 lsatcv0eq.p . . . . . 6 = (LSSum‘𝑊)
9 lsatcv0eq.c . . . . . 6 𝐶 = ( ⋖L𝑊)
10 lveclmod 19572 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
113, 10syl 17 . . . . . . 7 (𝜑𝑊 ∈ LMod)
127, 2, 11, 4lsatlssel 35685 . . . . . 6 (𝜑𝑄 ∈ (LSubSp‘𝑊))
137, 8, 1, 2, 9, 3, 12, 5lcvp 35728 . . . . 5 (𝜑 → ((𝑄𝑅) = { 0 } ↔ 𝑄𝐶(𝑄 𝑅)))
141, 2, 9, 3, 4lsatcv0 35719 . . . . . 6 (𝜑 → { 0 }𝐶𝑄)
1514biantrurd 533 . . . . 5 (𝜑 → (𝑄𝐶(𝑄 𝑅) ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
166, 13, 153bitrd 306 . . . 4 (𝜑 → (𝑄𝑅 ↔ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))))
173adantr 481 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑊 ∈ LVec)
181, 7lsssn0 19413 . . . . . . . 8 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
1911, 18syl 17 . . . . . . 7 (𝜑 → { 0 } ∈ (LSubSp‘𝑊))
2019adantr 481 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 } ∈ (LSubSp‘𝑊))
2112adantr 481 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄 ∈ (LSubSp‘𝑊))
227, 2, 11, 5lsatlssel 35685 . . . . . . . 8 (𝜑𝑅 ∈ (LSubSp‘𝑊))
237, 8lsmcl 19549 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑄 ∈ (LSubSp‘𝑊) ∧ 𝑅 ∈ (LSubSp‘𝑊)) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2411, 12, 22, 23syl3anc 1364 . . . . . . 7 (𝜑 → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
2524adantr 481 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → (𝑄 𝑅) ∈ (LSubSp‘𝑊))
26 simprl 767 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → { 0 }𝐶𝑄)
27 simprr 769 . . . . . 6 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → 𝑄𝐶(𝑄 𝑅))
287, 9, 17, 20, 21, 25, 26, 27lcvntr 35714 . . . . 5 ((𝜑 ∧ ({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅))) → ¬ { 0 }𝐶(𝑄 𝑅))
2928ex 413 . . . 4 (𝜑 → (({ 0 }𝐶𝑄𝑄𝐶(𝑄 𝑅)) → ¬ { 0 }𝐶(𝑄 𝑅)))
3016, 29sylbid 241 . . 3 (𝜑 → (𝑄𝑅 → ¬ { 0 }𝐶(𝑄 𝑅)))
3130necon4ad 3005 . 2 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) → 𝑄 = 𝑅))
327lsssssubg 19424 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3311, 32syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
3433, 12sseldd 3896 . . . . 5 (𝜑𝑄 ∈ (SubGrp‘𝑊))
358lsmidm 18521 . . . . 5 (𝑄 ∈ (SubGrp‘𝑊) → (𝑄 𝑄) = 𝑄)
3634, 35syl 17 . . . 4 (𝜑 → (𝑄 𝑄) = 𝑄)
3714, 36breqtrrd 4996 . . 3 (𝜑 → { 0 }𝐶(𝑄 𝑄))
38 oveq2 7031 . . . 4 (𝑄 = 𝑅 → (𝑄 𝑄) = (𝑄 𝑅))
3938breq2d 4980 . . 3 (𝑄 = 𝑅 → ({ 0 }𝐶(𝑄 𝑄) ↔ { 0 }𝐶(𝑄 𝑅)))
4037, 39syl5ibcom 246 . 2 (𝜑 → (𝑄 = 𝑅 → { 0 }𝐶(𝑄 𝑅)))
4131, 40impbid 213 1 (𝜑 → ({ 0 }𝐶(𝑄 𝑅) ↔ 𝑄 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wne 2986  cin 3864  wss 3865  {csn 4478   class class class wbr 4968  cfv 6232  (class class class)co 7023  0gc0g 16546  SubGrpcsubg 18031  LSSumclsm 18493  LModclmod 19328  LSubSpclss 19397  LVecclvec 19568  LSAtomsclsa 35662  L clcv 35706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-tpos 7750  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-3 11555  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-0g 16548  df-mre 16690  df-mrc 16691  df-acs 16693  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-grp 17868  df-minusg 17869  df-sbg 17870  df-subg 18034  df-cntz 18192  df-oppg 18219  df-lsm 18495  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-oppr 19067  df-dvdsr 19085  df-unit 19086  df-invr 19116  df-drng 19198  df-lmod 19330  df-lss 19398  df-lsp 19438  df-lvec 19569  df-lsatoms 35664  df-lcv 35707
This theorem is referenced by:  lsatcv1  35736
  Copyright terms: Public domain W3C validator