Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qextlt | Structured version Visualization version GIF version |
Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
qextlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
2 | 1 | ralrimivw 3108 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
3 | xrlttri2 12805 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
4 | qextltlem 12865 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | |
5 | simpl 482 | . . . . . . . 8 ⊢ ((¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
6 | 5 | reximi 3174 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
7 | 4, 6 | syl6 35 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
8 | qextltlem 12865 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)))) | |
9 | simpl 482 | . . . . . . . . . 10 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴)) | |
10 | bicom 221 | . . . . . . . . . 10 ⊢ ((𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ↔ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
11 | 9, 10 | sylnib 327 | . . . . . . . . 9 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
12 | 11 | reximi 3174 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
13 | 8, 12 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
14 | 13 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
15 | 7, 14 | jaod 855 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
16 | 3, 15 | sylbid 239 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
17 | rexnal 3165 | . . . 4 ⊢ (∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ↔ ¬ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
18 | 16, 17 | syl6ib 250 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ¬ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
19 | 18 | necon4ad 2961 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) → 𝐴 = 𝐵)) |
20 | 2, 19 | impbid2 225 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℚcq 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |