| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qextlt | Structured version Visualization version GIF version | ||
| Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| qextlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
| 2 | 1 | ralrimivw 3129 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
| 3 | xrlttri2 13045 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 4 | qextltlem 13105 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | |
| 5 | simpl 482 | . . . . . . . 8 ⊢ ((¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
| 6 | 5 | reximi 3071 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
| 7 | 4, 6 | syl6 35 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
| 8 | qextltlem 13105 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)))) | |
| 9 | simpl 482 | . . . . . . . . . 10 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴)) | |
| 10 | bicom 222 | . . . . . . . . . 10 ⊢ ((𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ↔ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
| 11 | 9, 10 | sylnib 328 | . . . . . . . . 9 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
| 12 | 11 | reximi 3071 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
| 13 | 8, 12 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
| 14 | 13 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
| 15 | 7, 14 | jaod 859 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
| 16 | 3, 15 | sylbid 240 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
| 17 | rexnal 3085 | . . . 4 ⊢ (∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ↔ ¬ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
| 18 | 16, 17 | imbitrdi 251 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ¬ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
| 19 | 18 | necon4ad 2948 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) → 𝐴 = 𝐵)) |
| 20 | 2, 19 | impbid2 226 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 class class class wbr 5095 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 ℚcq 12850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |