![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qextlt | Structured version Visualization version GIF version |
Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
qextlt | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5153 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
2 | 1 | ralrimivw 3148 | . 2 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
3 | xrlttri2 13127 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
4 | qextltlem 13187 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)))) | |
5 | simpl 481 | . . . . . . . 8 ⊢ ((¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
6 | 5 | reximi 3082 | . . . . . . 7 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ∧ ¬ (𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵)) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
7 | 4, 6 | syl6 35 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
8 | qextltlem 13187 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)))) | |
9 | simpl 481 | . . . . . . . . . 10 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴)) | |
10 | bicom 221 | . . . . . . . . . 10 ⊢ ((𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ↔ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
11 | 9, 10 | sylnib 327 | . . . . . . . . 9 ⊢ ((¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
12 | 11 | reximi 3082 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵 ↔ 𝑥 < 𝐴) ∧ ¬ (𝑥 ≤ 𝐵 ↔ 𝑥 ≤ 𝐴)) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) |
13 | 8, 12 | syl6 35 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
14 | 13 | ancoms 457 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
15 | 7, 14 | jaod 855 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝐵 ∨ 𝐵 < 𝐴) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
16 | 3, 15 | sylbid 239 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
17 | rexnal 3098 | . . . 4 ⊢ (∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) ↔ ¬ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵)) | |
18 | 16, 17 | imbitrdi 250 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≠ 𝐵 → ¬ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
19 | 18 | necon4ad 2957 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵) → 𝐴 = 𝐵)) |
20 | 2, 19 | impbid2 225 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴 ↔ 𝑥 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 class class class wbr 5149 ℝ*cxr 11253 < clt 11254 ≤ cle 11255 ℚcq 12938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-q 12939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |