MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qextlt Structured version   Visualization version   GIF version

Theorem qextlt 13188
Description: An extensionality-like property for extended real ordering. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
qextlt ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴𝑥 < 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qextlt
StepHypRef Expression
1 breq2 5153 . . 3 (𝐴 = 𝐵 → (𝑥 < 𝐴𝑥 < 𝐵))
21ralrimivw 3148 . 2 (𝐴 = 𝐵 → ∀𝑥 ∈ ℚ (𝑥 < 𝐴𝑥 < 𝐵))
3 xrlttri2 13127 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
4 qextltlem 13187 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵))))
5 simpl 481 . . . . . . . 8 ((¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)) → ¬ (𝑥 < 𝐴𝑥 < 𝐵))
65reximi 3082 . . . . . . 7 (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐴𝑥 < 𝐵) ∧ ¬ (𝑥𝐴𝑥𝐵)) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴𝑥 < 𝐵))
74, 6syl6 35 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴𝑥 < 𝐵)))
8 qextltlem 13187 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴))))
9 simpl 481 . . . . . . . . . 10 ((¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ¬ (𝑥 < 𝐵𝑥 < 𝐴))
10 bicom 221 . . . . . . . . . 10 ((𝑥 < 𝐵𝑥 < 𝐴) ↔ (𝑥 < 𝐴𝑥 < 𝐵))
119, 10sylnib 327 . . . . . . . . 9 ((¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ¬ (𝑥 < 𝐴𝑥 < 𝐵))
1211reximi 3082 . . . . . . . 8 (∃𝑥 ∈ ℚ (¬ (𝑥 < 𝐵𝑥 < 𝐴) ∧ ¬ (𝑥𝐵𝑥𝐴)) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴𝑥 < 𝐵))
138, 12syl6 35 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴𝑥 < 𝐵)))
1413ancoms 457 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴𝑥 < 𝐵)))
157, 14jaod 855 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐴) → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴𝑥 < 𝐵)))
163, 15sylbid 239 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴𝑥 < 𝐵)))
17 rexnal 3098 . . . 4 (∃𝑥 ∈ ℚ ¬ (𝑥 < 𝐴𝑥 < 𝐵) ↔ ¬ ∀𝑥 ∈ ℚ (𝑥 < 𝐴𝑥 < 𝐵))
1816, 17imbitrdi 250 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ¬ ∀𝑥 ∈ ℚ (𝑥 < 𝐴𝑥 < 𝐵)))
1918necon4ad 2957 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℚ (𝑥 < 𝐴𝑥 < 𝐵) → 𝐴 = 𝐵))
202, 19impbid2 225 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℚ (𝑥 < 𝐴𝑥 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wcel 2104  wne 2938  wral 3059  wrex 3068   class class class wbr 5149  *cxr 11253   < clt 11254  cle 11255  cq 12938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-sup 9441  df-inf 9442  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-div 11878  df-nn 12219  df-n0 12479  df-z 12565  df-uz 12829  df-q 12939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator