Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19 Structured version   Visualization version   GIF version

Theorem jm2.19 39934
Description: Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
jm2.19 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))

Proof of Theorem jm2.19
StepHypRef Expression
1 rmyeq0 39894 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0))
213adant2 1128 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0))
3 0dvds 15622 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
433ad2ant3 1132 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁𝑁 = 0))
5 frmy 39855 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
65fovcl 7258 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
763adant2 1128 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
8 0dvds 15622 . . . . . 6 ((𝐴 Yrm 𝑁) ∈ ℤ → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0))
97, 8syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0))
102, 4, 93bitr4d 314 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁)))
1110adantr 484 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁)))
12 simpr 488 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
1312breq1d 5040 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ 0 ∥ 𝑁))
1412oveq2d 7151 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 0))
15 simpl1 1188 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝐴 ∈ (ℤ‘2))
16 rmy0 39870 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1715, 16syl 17 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 0) = 0)
1814, 17eqtrd 2833 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = 0)
1918breq1d 5040 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ 0 ∥ (𝐴 Yrm 𝑁)))
2011, 13, 193bitr4d 314 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
215fovcl 7258 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
22213adant3 1129 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
23 dvds0 15617 . . . . . . . 8 ((𝐴 Yrm 𝑀) ∈ ℤ → (𝐴 Yrm 𝑀) ∥ 0)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ 0)
25163ad2ant1 1130 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 0) = 0)
2624, 25breqtrrd 5058 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0))
27 oveq2 7143 . . . . . . 7 ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm 0))
2827breq2d 5042 . . . . . 6 ((𝑁 mod (abs‘𝑀)) = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0)))
2926, 28syl5ibrcom 250 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
3029adantr 484 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
31 zre 11973 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
32313ad2ant3 1132 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3332ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℝ)
34 zcn 11974 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
35343ad2ant2 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
3635ad2antrr 725 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℂ)
37 simplr 768 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ≠ 0)
3836, 37absrpcld 14800 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℝ+)
39 modlt 13243 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀))
4033, 38, 39syl2anc 587 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀))
41 simpll1 1209 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝐴 ∈ (ℤ‘2))
42 simpll3 1211 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℤ)
43 simpll2 1210 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℤ)
44 nnabscl 14677 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
4543, 37, 44syl2anc 587 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℕ)
4642, 45zmodcld 13255 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℕ0)
47 nn0abscl 14664 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
48473ad2ant2 1131 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
4948ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℕ0)
50 ltrmynn0 39889 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℕ0 ∧ (abs‘𝑀) ∈ ℕ0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))))
5141, 46, 49, 50syl3anc 1368 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))))
5240, 51mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀)))
5346nn0zd 12073 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℤ)
54 rmyabs 39899 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))))
5541, 53, 54syl2anc 587 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))))
5633, 38modcld 13238 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
57 modge0 13242 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → 0 ≤ (𝑁 mod (abs‘𝑀)))
5833, 38, 57syl2anc 587 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 0 ≤ (𝑁 mod (abs‘𝑀)))
5956, 58absidd 14774 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝑁 mod (abs‘𝑀))) = (𝑁 mod (abs‘𝑀)))
6059oveq2d 7151 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
6155, 60eqtrd 2833 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
62 rmyabs 39899 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
6341, 43, 62syl2anc 587 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
6452, 61, 633brtr4d 5062 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)))
655fovcl 7258 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ)
6641, 53, 65syl2anc 587 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ)
67 nn0abscl 14664 . . . . . . . . . . 11 ((𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℕ0)
6866, 67syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℕ0)
6968nn0red 11944 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℝ)
7022ad2antrr 725 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm 𝑀) ∈ ℤ)
71 nn0abscl 14664 . . . . . . . . . . 11 ((𝐴 Yrm 𝑀) ∈ ℤ → (abs‘(𝐴 Yrm 𝑀)) ∈ ℕ0)
7270, 71syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℕ0)
7372nn0red 11944 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℝ)
7469, 73ltnled 10776 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)) ↔ ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
7564, 74mpbid 235 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
76 simpr 488 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ≠ 0)
77 rmyeq0 39894 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0))
7841, 53, 77syl2anc 587 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0))
7978necon3bid 3031 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0))
8076, 79mpbid 235 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0)
81 dvdsleabs2 15654 . . . . . . . 8 (((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
8270, 66, 80, 81syl3anc 1368 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
8375, 82mtod 201 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
8483ex 416 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
8584necon4ad 3006 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (𝑁 mod (abs‘𝑀)) = 0))
8630, 85impbid 215 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
87 simpl2 1189 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ)
88 simpl3 1190 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ)
89 simpr 488 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
90 dvdsabsmod0 39928 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0))
9187, 88, 89, 90syl3anc 1368 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0))
92 simpl1 1188 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐴 ∈ (ℤ‘2))
9332adantr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
94 zre 11973 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
95943ad2ant2 1131 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
9695adantr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
97 modabsdifz 39927 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
9893, 96, 89, 97syl3anc 1368 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
9998znegcld 12077 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
100 jm2.19lem4 39933 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
10192, 87, 88, 99, 100syl121anc 1372 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
10232recnd 10658 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
103102adantr 484 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ)
10435adantr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
105104, 89absrpcld 14800 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
10693, 105modcld 13238 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
107106recnd 10658 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℂ)
108103, 107subcld 10986 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
109108, 104, 89divcld 11405 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℂ)
110109, 104mulneg1d 11082 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))
111110oveq2d 7151 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
112109, 104mulcld 10650 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) ∈ ℂ)
113103, 112negsubd 10992 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
114108, 104, 89divcan1d 11406 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = (𝑁 − (𝑁 mod (abs‘𝑀))))
115114oveq2d 7151 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))))
116103, 107nncand 10991 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))) = (𝑁 mod (abs‘𝑀)))
117115, 116eqtrd 2833 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 mod (abs‘𝑀)))
118111, 113, 1173eqtrrd 2838 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) = (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
119118oveq2d 7151 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))))
120119breq2d 5042 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
121101, 120bitr4d 285 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
12286, 91, 1213bitr4d 314 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
12320, 122pm2.61dane 3074 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377   mod cmo 13232  abscabs 14585  cdvds 15599   Yrm crmy 39842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-numer 16065  df-denom 16066  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-squarenn 39782  df-pell1qr 39783  df-pell14qr 39784  df-pell1234qr 39785  df-pellfund 39786  df-rmx 39843  df-rmy 39844
This theorem is referenced by:  jm2.20nn  39938
  Copyright terms: Public domain W3C validator