Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19 Structured version   Visualization version   GIF version

Theorem jm2.19 42982
Description: Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
jm2.19 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))

Proof of Theorem jm2.19
StepHypRef Expression
1 rmyeq0 42942 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0))
213adant2 1131 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0))
3 0dvds 16246 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
433ad2ant3 1135 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁𝑁 = 0))
5 frmy 42903 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
65fovcl 7517 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
763adant2 1131 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
8 0dvds 16246 . . . . . 6 ((𝐴 Yrm 𝑁) ∈ ℤ → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0))
97, 8syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0))
102, 4, 93bitr4d 311 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁)))
1110adantr 480 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁)))
12 simpr 484 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
1312breq1d 5117 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ 0 ∥ 𝑁))
1412oveq2d 7403 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 0))
15 simpl1 1192 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝐴 ∈ (ℤ‘2))
16 rmy0 42918 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1715, 16syl 17 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 0) = 0)
1814, 17eqtrd 2764 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = 0)
1918breq1d 5117 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ 0 ∥ (𝐴 Yrm 𝑁)))
2011, 13, 193bitr4d 311 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
215fovcl 7517 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
22213adant3 1132 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
23 dvds0 16241 . . . . . . . 8 ((𝐴 Yrm 𝑀) ∈ ℤ → (𝐴 Yrm 𝑀) ∥ 0)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ 0)
25163ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 0) = 0)
2624, 25breqtrrd 5135 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0))
27 oveq2 7395 . . . . . . 7 ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm 0))
2827breq2d 5119 . . . . . 6 ((𝑁 mod (abs‘𝑀)) = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0)))
2926, 28syl5ibrcom 247 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
3029adantr 480 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
31 zre 12533 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
32313ad2ant3 1135 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3332ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℝ)
34 zcn 12534 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
35343ad2ant2 1134 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
3635ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℂ)
37 simplr 768 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ≠ 0)
3836, 37absrpcld 15417 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℝ+)
39 modlt 13842 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀))
4033, 38, 39syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀))
41 simpll1 1213 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝐴 ∈ (ℤ‘2))
42 simpll3 1215 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℤ)
43 simpll2 1214 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℤ)
44 nnabscl 15292 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
4543, 37, 44syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℕ)
4642, 45zmodcld 13854 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℕ0)
47 nn0abscl 15278 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
48473ad2ant2 1134 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
4948ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℕ0)
50 ltrmynn0 42937 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℕ0 ∧ (abs‘𝑀) ∈ ℕ0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))))
5141, 46, 49, 50syl3anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))))
5240, 51mpbid 232 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀)))
5346nn0zd 12555 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℤ)
54 rmyabs 42947 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))))
5541, 53, 54syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))))
5633, 38modcld 13837 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
57 modge0 13841 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → 0 ≤ (𝑁 mod (abs‘𝑀)))
5833, 38, 57syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 0 ≤ (𝑁 mod (abs‘𝑀)))
5956, 58absidd 15389 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝑁 mod (abs‘𝑀))) = (𝑁 mod (abs‘𝑀)))
6059oveq2d 7403 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
6155, 60eqtrd 2764 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
62 rmyabs 42947 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
6341, 43, 62syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
6452, 61, 633brtr4d 5139 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)))
655fovcl 7517 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ)
6641, 53, 65syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ)
67 nn0abscl 15278 . . . . . . . . . . 11 ((𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℕ0)
6866, 67syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℕ0)
6968nn0red 12504 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℝ)
7022ad2antrr 726 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm 𝑀) ∈ ℤ)
71 nn0abscl 15278 . . . . . . . . . . 11 ((𝐴 Yrm 𝑀) ∈ ℤ → (abs‘(𝐴 Yrm 𝑀)) ∈ ℕ0)
7270, 71syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℕ0)
7372nn0red 12504 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℝ)
7469, 73ltnled 11321 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)) ↔ ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
7564, 74mpbid 232 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
76 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ≠ 0)
77 rmyeq0 42942 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0))
7841, 53, 77syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0))
7978necon3bid 2969 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0))
8076, 79mpbid 232 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0)
81 dvdsleabs2 16282 . . . . . . . 8 (((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
8270, 66, 80, 81syl3anc 1373 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
8375, 82mtod 198 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
8483ex 412 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
8584necon4ad 2944 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (𝑁 mod (abs‘𝑀)) = 0))
8630, 85impbid 212 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
87 simpl2 1193 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ)
88 simpl3 1194 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ)
89 simpr 484 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
90 dvdsabsmod0 42976 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0))
9187, 88, 89, 90syl3anc 1373 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0))
92 simpl1 1192 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐴 ∈ (ℤ‘2))
9332adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
94 zre 12533 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
95943ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
9695adantr 480 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
97 modabsdifz 42975 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
9893, 96, 89, 97syl3anc 1373 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
9998znegcld 12640 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
100 jm2.19lem4 42981 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
10192, 87, 88, 99, 100syl121anc 1377 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
10232recnd 11202 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
103102adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ)
10435adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
105104, 89absrpcld 15417 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
10693, 105modcld 13837 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
107106recnd 11202 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℂ)
108103, 107subcld 11533 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
109108, 104, 89divcld 11958 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℂ)
110109, 104mulneg1d 11631 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))
111110oveq2d 7403 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
112109, 104mulcld 11194 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) ∈ ℂ)
113103, 112negsubd 11539 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
114108, 104, 89divcan1d 11959 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = (𝑁 − (𝑁 mod (abs‘𝑀))))
115114oveq2d 7403 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))))
116103, 107nncand 11538 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))) = (𝑁 mod (abs‘𝑀)))
117115, 116eqtrd 2764 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 mod (abs‘𝑀)))
118111, 113, 1173eqtrrd 2769 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) = (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
119118oveq2d 7403 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))))
120119breq2d 5119 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
121101, 120bitr4d 282 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
12286, 91, 1213bitr4d 311 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
12320, 122pm2.61dane 3012 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951   mod cmo 13831  abscabs 15200  cdvds 16222   Yrm crmy 42889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-squarenn 42829  df-pell1qr 42830  df-pell14qr 42831  df-pell1234qr 42832  df-pellfund 42833  df-rmx 42890  df-rmy 42891
This theorem is referenced by:  jm2.20nn  42986
  Copyright terms: Public domain W3C validator