Proof of Theorem jm2.19
Step | Hyp | Ref
| Expression |
1 | | rmyeq0 40267 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0)) |
2 | 1 | 3adant2 1128 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0)) |
3 | | 0dvds 15678 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → (0
∥ 𝑁 ↔ 𝑁 = 0)) |
4 | 3 | 3ad2ant3 1132 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
5 | | frmy 40228 |
. . . . . . . 8
⊢
Yrm :((ℤ≥‘2) ×
ℤ)⟶ℤ |
6 | 5 | fovcl 7274 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
7 | 6 | 3adant2 1128 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ) |
8 | | 0dvds 15678 |
. . . . . 6
⊢ ((𝐴 Yrm 𝑁) ∈ ℤ → (0
∥ (𝐴 Yrm
𝑁) ↔ (𝐴 Yrm 𝑁) = 0)) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0)) |
10 | 2, 4, 9 | 3bitr4d 314 |
. . . 4
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁))) |
11 | 10 | adantr 484 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁))) |
12 | | simpr 488 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0) |
13 | 12 | breq1d 5042 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁)) |
14 | 12 | oveq2d 7166 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 0)) |
15 | | simpl1 1188 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝐴 ∈
(ℤ≥‘2)) |
16 | | rmy0 40243 |
. . . . . 6
⊢ (𝐴 ∈
(ℤ≥‘2) → (𝐴 Yrm 0) = 0) |
17 | 15, 16 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 0) = 0) |
18 | 14, 17 | eqtrd 2793 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = 0) |
19 | 18 | breq1d 5042 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ 0 ∥ (𝐴 Yrm 𝑁))) |
20 | 11, 13, 19 | 3bitr4d 314 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 ∥ 𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁))) |
21 | 5 | fovcl 7274 |
. . . . . . . . 9
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
22 | 21 | 3adant3 1129 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ) |
23 | | dvds0 15673 |
. . . . . . . 8
⊢ ((𝐴 Yrm 𝑀) ∈ ℤ → (𝐴 Yrm 𝑀) ∥ 0) |
24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ 0) |
25 | 16 | 3ad2ant1 1130 |
. . . . . . 7
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 0) = 0) |
26 | 24, 25 | breqtrrd 5060 |
. . . . . 6
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0)) |
27 | | oveq2 7158 |
. . . . . . 7
⊢ ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm 0)) |
28 | 27 | breq2d 5044 |
. . . . . 6
⊢ ((𝑁 mod (abs‘𝑀)) = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0))) |
29 | 26, 28 | syl5ibrcom 250 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))) |
30 | 29 | adantr 484 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))) |
31 | | zre 12024 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
32 | 31 | 3ad2ant3 1132 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
33 | 32 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℝ) |
34 | | zcn 12025 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
35 | 34 | 3ad2ant2 1131 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
36 | 35 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℂ) |
37 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ≠ 0) |
38 | 36, 37 | absrpcld 14856 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈
ℝ+) |
39 | | modlt 13297 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℝ ∧
(abs‘𝑀) ∈
ℝ+) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀)) |
40 | 33, 38, 39 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀)) |
41 | | simpll1 1209 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝐴 ∈
(ℤ≥‘2)) |
42 | | simpll3 1211 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℤ) |
43 | | simpll2 1210 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℤ) |
44 | | nnabscl 14733 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈
ℕ) |
45 | 43, 37, 44 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈
ℕ) |
46 | 42, 45 | zmodcld 13309 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈
ℕ0) |
47 | | nn0abscl 14720 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℤ →
(abs‘𝑀) ∈
ℕ0) |
48 | 47 | 3ad2ant2 1131 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈
ℕ0) |
49 | 48 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈
ℕ0) |
50 | | ltrmynn0 40262 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℕ0 ∧
(abs‘𝑀) ∈
ℕ0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀)))) |
51 | 41, 46, 49, 50 | syl3anc 1368 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀)))) |
52 | 40, 51 | mpbid 235 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))) |
53 | 46 | nn0zd 12124 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℤ) |
54 | | rmyabs 40272 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀))))) |
55 | 41, 53, 54 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀))))) |
56 | 33, 38 | modcld 13292 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ) |
57 | | modge0 13296 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℝ ∧
(abs‘𝑀) ∈
ℝ+) → 0 ≤ (𝑁 mod (abs‘𝑀))) |
58 | 33, 38, 57 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 0 ≤ (𝑁 mod (abs‘𝑀))) |
59 | 56, 58 | absidd 14830 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝑁 mod (abs‘𝑀))) = (𝑁 mod (abs‘𝑀))) |
60 | 59 | oveq2d 7166 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀)))) |
61 | 55, 60 | eqtrd 2793 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀)))) |
62 | | rmyabs 40272 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀))) |
63 | 41, 43, 62 | syl2anc 587 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀))) |
64 | 52, 61, 63 | 3brtr4d 5064 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀))) |
65 | 5 | fovcl 7274 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ) |
66 | 41, 53, 65 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ) |
67 | | nn0abscl 14720 |
. . . . . . . . . . 11
⊢ ((𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ →
(abs‘(𝐴
Yrm (𝑁 mod
(abs‘𝑀)))) ∈
ℕ0) |
68 | 66, 67 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈
ℕ0) |
69 | 68 | nn0red 11995 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈
ℝ) |
70 | 22 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm 𝑀) ∈ ℤ) |
71 | | nn0abscl 14720 |
. . . . . . . . . . 11
⊢ ((𝐴 Yrm 𝑀) ∈ ℤ →
(abs‘(𝐴
Yrm 𝑀)) ∈
ℕ0) |
72 | 70, 71 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈
ℕ0) |
73 | 72 | nn0red 11995 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈
ℝ) |
74 | 69, 73 | ltnled 10825 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)) ↔ ¬
(abs‘(𝐴
Yrm 𝑀)) ≤
(abs‘(𝐴
Yrm (𝑁 mod
(abs‘𝑀)))))) |
75 | 64, 74 | mpbid 235 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))) |
76 | | simpr 488 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ≠ 0) |
77 | | rmyeq0 40267 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0)) |
78 | 41, 53, 77 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0)) |
79 | 78 | necon3bid 2995 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0)) |
80 | 76, 79 | mpbid 235 |
. . . . . . . 8
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0) |
81 | | dvdsleabs2 15713 |
. . . . . . . 8
⊢ (((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))))) |
82 | 70, 66, 80, 81 | syl3anc 1368 |
. . . . . . 7
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))))) |
83 | 75, 82 | mtod 201 |
. . . . . 6
⊢ ((((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))) |
84 | 83 | ex 416 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))) |
85 | 84 | necon4ad 2970 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (𝑁 mod (abs‘𝑀)) = 0)) |
86 | 30, 85 | impbid 215 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))) |
87 | | simpl2 1189 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ) |
88 | | simpl3 1190 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ) |
89 | | simpr 488 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0) |
90 | | dvdsabsmod0 40301 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0)) |
91 | 87, 88, 89, 90 | syl3anc 1368 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 ∥ 𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0)) |
92 | | simpl1 1188 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐴 ∈
(ℤ≥‘2)) |
93 | 32 | adantr 484 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ) |
94 | | zre 12024 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℝ) |
95 | 94 | 3ad2ant2 1131 |
. . . . . . . 8
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
96 | 95 | adantr 484 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ) |
97 | | modabsdifz 40300 |
. . . . . . 7
⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) |
98 | 93, 96, 89, 97 | syl3anc 1368 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) |
99 | 98 | znegcld 12128 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) |
100 | | jm2.19lem4 40306 |
. . . . 5
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))))) |
101 | 92, 87, 88, 99, 100 | syl121anc 1372 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))))) |
102 | 32 | recnd 10707 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
103 | 102 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ) |
104 | 35 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) |
105 | 104, 89 | absrpcld 14856 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈
ℝ+) |
106 | 93, 105 | modcld 13292 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ) |
107 | 106 | recnd 10707 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℂ) |
108 | 103, 107 | subcld 11035 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ) |
109 | 108, 104,
89 | divcld 11454 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℂ) |
110 | 109, 104 | mulneg1d 11131 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) |
111 | 110 | oveq2d 7166 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))) |
112 | 109, 104 | mulcld 10699 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) ∈ ℂ) |
113 | 103, 112 | negsubd 11041 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))) |
114 | 108, 104,
89 | divcan1d 11455 |
. . . . . . . . 9
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = (𝑁 − (𝑁 mod (abs‘𝑀)))) |
115 | 114 | oveq2d 7166 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀))))) |
116 | 103, 107 | nncand 11040 |
. . . . . . . 8
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))) = (𝑁 mod (abs‘𝑀))) |
117 | 115, 116 | eqtrd 2793 |
. . . . . . 7
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 mod (abs‘𝑀))) |
118 | 111, 113,
117 | 3eqtrrd 2798 |
. . . . . 6
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) = (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))) |
119 | 118 | oveq2d 7166 |
. . . . 5
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))) |
120 | 119 | breq2d 5044 |
. . . 4
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))))) |
121 | 101, 120 | bitr4d 285 |
. . 3
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))) |
122 | 86, 91, 121 | 3bitr4d 314 |
. 2
⊢ (((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 ∥ 𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁))) |
123 | 20, 122 | pm2.61dane 3038 |
1
⊢ ((𝐴 ∈
(ℤ≥‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁))) |