Step | Hyp | Ref
| Expression |
1 | | erdsze.n |
. . . . . 6
β’ (π β π β β) |
2 | | erdsze.f |
. . . . . 6
β’ (π β πΉ:(1...π)β1-1ββ) |
3 | | erdszelem.i |
. . . . . 6
β’ πΌ = (π₯ β (1...π) β¦ sup((β― β {π¦ β π« (1...π₯) β£ ((πΉ βΎ π¦) Isom < , < (π¦, (πΉ β π¦)) β§ π₯ β π¦)}), β, < )) |
4 | | ltso 11294 |
. . . . . 6
β’ < Or
β |
5 | 1, 2, 3, 4 | erdszelem6 34187 |
. . . . 5
β’ (π β πΌ:(1...π)βΆβ) |
6 | 5 | ffvelcdmda 7087 |
. . . 4
β’ ((π β§ π β (1...π)) β (πΌβπ) β β) |
7 | | erdszelem.j |
. . . . . 6
β’ π½ = (π₯ β (1...π) β¦ sup((β― β {π¦ β π« (1...π₯) β£ ((πΉ βΎ π¦) Isom < , β‘ < (π¦, (πΉ β π¦)) β§ π₯ β π¦)}), β, < )) |
8 | | gtso 11295 |
. . . . . 6
β’ β‘ < Or β |
9 | 1, 2, 7, 8 | erdszelem6 34187 |
. . . . 5
β’ (π β π½:(1...π)βΆβ) |
10 | 9 | ffvelcdmda 7087 |
. . . 4
β’ ((π β§ π β (1...π)) β (π½βπ) β β) |
11 | | opelxpi 5714 |
. . . 4
β’ (((πΌβπ) β β β§ (π½βπ) β β) β β¨(πΌβπ), (π½βπ)β© β (β Γ
β)) |
12 | 6, 10, 11 | syl2anc 585 |
. . 3
β’ ((π β§ π β (1...π)) β β¨(πΌβπ), (π½βπ)β© β (β Γ
β)) |
13 | | erdszelem.t |
. . 3
β’ π = (π β (1...π) β¦ β¨(πΌβπ), (π½βπ)β©) |
14 | 12, 13 | fmptd 7114 |
. 2
β’ (π β π:(1...π)βΆ(β Γ
β)) |
15 | | fveq2 6892 |
. . . . . 6
β’ (π = π§ β (πβπ) = (πβπ§)) |
16 | | fveq2 6892 |
. . . . . 6
β’ (π = π€ β (πβπ) = (πβπ€)) |
17 | 15, 16 | eqeqan12d 2747 |
. . . . 5
β’ ((π = π§ β§ π = π€) β ((πβπ) = (πβπ) β (πβπ§) = (πβπ€))) |
18 | | eqeq12 2750 |
. . . . 5
β’ ((π = π§ β§ π = π€) β (π = π β π§ = π€)) |
19 | 17, 18 | imbi12d 345 |
. . . 4
β’ ((π = π§ β§ π = π€) β (((πβπ) = (πβπ) β π = π) β ((πβπ§) = (πβπ€) β π§ = π€))) |
20 | | fveq2 6892 |
. . . . . . 7
β’ (π = π€ β (πβπ) = (πβπ€)) |
21 | | fveq2 6892 |
. . . . . . 7
β’ (π = π§ β (πβπ) = (πβπ§)) |
22 | 20, 21 | eqeqan12d 2747 |
. . . . . 6
β’ ((π = π€ β§ π = π§) β ((πβπ) = (πβπ) β (πβπ€) = (πβπ§))) |
23 | | eqcom 2740 |
. . . . . 6
β’ ((πβπ€) = (πβπ§) β (πβπ§) = (πβπ€)) |
24 | 22, 23 | bitrdi 287 |
. . . . 5
β’ ((π = π€ β§ π = π§) β ((πβπ) = (πβπ) β (πβπ§) = (πβπ€))) |
25 | | eqeq12 2750 |
. . . . . 6
β’ ((π = π€ β§ π = π§) β (π = π β π€ = π§)) |
26 | | eqcom 2740 |
. . . . . 6
β’ (π€ = π§ β π§ = π€) |
27 | 25, 26 | bitrdi 287 |
. . . . 5
β’ ((π = π€ β§ π = π§) β (π = π β π§ = π€)) |
28 | 24, 27 | imbi12d 345 |
. . . 4
β’ ((π = π€ β§ π = π§) β (((πβπ) = (πβπ) β π = π) β ((πβπ§) = (πβπ€) β π§ = π€))) |
29 | | elfzelz 13501 |
. . . . . . 7
β’ (π§ β (1...π) β π§ β β€) |
30 | 29 | zred 12666 |
. . . . . 6
β’ (π§ β (1...π) β π§ β β) |
31 | 30 | ssriv 3987 |
. . . . 5
β’
(1...π) β
β |
32 | 31 | a1i 11 |
. . . 4
β’ (π β (1...π) β β) |
33 | | biidd 262 |
. . . 4
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π))) β (((πβπ§) = (πβπ€) β π§ = π€) β ((πβπ§) = (πβπ€) β π§ = π€))) |
34 | | simpr1 1195 |
. . . . . . . 8
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β π§ β (1...π)) |
35 | | fveq2 6892 |
. . . . . . . . . 10
β’ (π = π§ β (πΌβπ) = (πΌβπ§)) |
36 | | fveq2 6892 |
. . . . . . . . . 10
β’ (π = π§ β (π½βπ) = (π½βπ§)) |
37 | 35, 36 | opeq12d 4882 |
. . . . . . . . 9
β’ (π = π§ β β¨(πΌβπ), (π½βπ)β© = β¨(πΌβπ§), (π½βπ§)β©) |
38 | | opex 5465 |
. . . . . . . . 9
β’
β¨(πΌβπ§), (π½βπ§)β© β V |
39 | 37, 13, 38 | fvmpt 6999 |
. . . . . . . 8
β’ (π§ β (1...π) β (πβπ§) = β¨(πΌβπ§), (π½βπ§)β©) |
40 | 34, 39 | syl 17 |
. . . . . . 7
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β (πβπ§) = β¨(πΌβπ§), (π½βπ§)β©) |
41 | | simpr2 1196 |
. . . . . . . 8
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β π€ β (1...π)) |
42 | | fveq2 6892 |
. . . . . . . . . 10
β’ (π = π€ β (πΌβπ) = (πΌβπ€)) |
43 | | fveq2 6892 |
. . . . . . . . . 10
β’ (π = π€ β (π½βπ) = (π½βπ€)) |
44 | 42, 43 | opeq12d 4882 |
. . . . . . . . 9
β’ (π = π€ β β¨(πΌβπ), (π½βπ)β© = β¨(πΌβπ€), (π½βπ€)β©) |
45 | | opex 5465 |
. . . . . . . . 9
β’
β¨(πΌβπ€), (π½βπ€)β© β V |
46 | 44, 13, 45 | fvmpt 6999 |
. . . . . . . 8
β’ (π€ β (1...π) β (πβπ€) = β¨(πΌβπ€), (π½βπ€)β©) |
47 | 41, 46 | syl 17 |
. . . . . . 7
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β (πβπ€) = β¨(πΌβπ€), (π½βπ€)β©) |
48 | 40, 47 | eqeq12d 2749 |
. . . . . 6
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β ((πβπ§) = (πβπ€) β β¨(πΌβπ§), (π½βπ§)β© = β¨(πΌβπ€), (π½βπ€)β©)) |
49 | | fvex 6905 |
. . . . . . . 8
β’ (πΌβπ§) β V |
50 | | fvex 6905 |
. . . . . . . 8
β’ (π½βπ§) β V |
51 | 49, 50 | opth 5477 |
. . . . . . 7
β’
(β¨(πΌβπ§), (π½βπ§)β© = β¨(πΌβπ€), (π½βπ€)β© β ((πΌβπ§) = (πΌβπ€) β§ (π½βπ§) = (π½βπ€))) |
52 | 34, 30 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β π§ β β) |
53 | 31, 41 | sselid 3981 |
. . . . . . . . . 10
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β π€ β β) |
54 | | simpr3 1197 |
. . . . . . . . . 10
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β π§ β€ π€) |
55 | 52, 53, 54 | leltned 11367 |
. . . . . . . . 9
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β (π§ < π€ β π€ β π§)) |
56 | 2 | adantr 482 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β πΉ:(1...π)β1-1ββ) |
57 | | f1fveq 7261 |
. . . . . . . . . . . . . . . . 17
β’ ((πΉ:(1...π)β1-1ββ β§ (π§ β (1...π) β§ π€ β (1...π))) β ((πΉβπ§) = (πΉβπ€) β π§ = π€)) |
58 | 56, 34, 41, 57 | syl12anc 836 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β ((πΉβπ§) = (πΉβπ€) β π§ = π€)) |
59 | 58, 26 | bitr4di 289 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β ((πΉβπ§) = (πΉβπ€) β π€ = π§)) |
60 | 59 | necon3bid 2986 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β ((πΉβπ§) β (πΉβπ€) β π€ β π§)) |
61 | 55, 60 | bitr4d 282 |
. . . . . . . . . . . . 13
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β (π§ < π€ β (πΉβπ§) β (πΉβπ€))) |
62 | 61 | biimpa 478 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β (πΉβπ§) β (πΉβπ€)) |
63 | | f1f 6788 |
. . . . . . . . . . . . . . . 16
β’ (πΉ:(1...π)β1-1ββ β πΉ:(1...π)βΆβ) |
64 | 2, 63 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β πΉ:(1...π)βΆβ) |
65 | 64 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β πΉ:(1...π)βΆβ) |
66 | 34 | adantr 482 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β π§ β (1...π)) |
67 | 65, 66 | ffvelcdmd 7088 |
. . . . . . . . . . . . 13
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β (πΉβπ§) β β) |
68 | 41 | adantr 482 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β π€ β (1...π)) |
69 | 65, 68 | ffvelcdmd 7088 |
. . . . . . . . . . . . 13
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β (πΉβπ€) β β) |
70 | 67, 69 | lttri2d 11353 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β ((πΉβπ§) β (πΉβπ€) β ((πΉβπ§) < (πΉβπ€) β¨ (πΉβπ€) < (πΉβπ§)))) |
71 | 62, 70 | mpbid 231 |
. . . . . . . . . . 11
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β ((πΉβπ§) < (πΉβπ€) β¨ (πΉβπ€) < (πΉβπ§))) |
72 | 1 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β π β β) |
73 | 2 | ad2antrr 725 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β πΉ:(1...π)β1-1ββ) |
74 | | simpr 486 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β π§ < π€) |
75 | 72, 73, 3, 4, 66, 68, 74 | erdszelem8 34189 |
. . . . . . . . . . . . 13
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β ((πΌβπ§) = (πΌβπ€) β Β¬ (πΉβπ§) < (πΉβπ€))) |
76 | 72, 73, 7, 8, 66, 68, 74 | erdszelem8 34189 |
. . . . . . . . . . . . 13
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β ((π½βπ§) = (π½βπ€) β Β¬ (πΉβπ§)β‘
< (πΉβπ€))) |
77 | 75, 76 | anim12d 610 |
. . . . . . . . . . . 12
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β (((πΌβπ§) = (πΌβπ€) β§ (π½βπ§) = (π½βπ€)) β (Β¬ (πΉβπ§) < (πΉβπ€) β§ Β¬ (πΉβπ§)β‘
< (πΉβπ€)))) |
78 | | ioran 983 |
. . . . . . . . . . . . 13
β’ (Β¬
((πΉβπ§) < (πΉβπ€) β¨ (πΉβπ€) < (πΉβπ§)) β (Β¬ (πΉβπ§) < (πΉβπ€) β§ Β¬ (πΉβπ€) < (πΉβπ§))) |
79 | | fvex 6905 |
. . . . . . . . . . . . . . . 16
β’ (πΉβπ§) β V |
80 | | fvex 6905 |
. . . . . . . . . . . . . . . 16
β’ (πΉβπ€) β V |
81 | 79, 80 | brcnv 5883 |
. . . . . . . . . . . . . . 15
β’ ((πΉβπ§)β‘
< (πΉβπ€) β (πΉβπ€) < (πΉβπ§)) |
82 | 81 | notbii 320 |
. . . . . . . . . . . . . 14
β’ (Β¬
(πΉβπ§)β‘
< (πΉβπ€) β Β¬ (πΉβπ€) < (πΉβπ§)) |
83 | 82 | anbi2i 624 |
. . . . . . . . . . . . 13
β’ ((Β¬
(πΉβπ§) < (πΉβπ€) β§ Β¬ (πΉβπ§)β‘
< (πΉβπ€)) β (Β¬ (πΉβπ§) < (πΉβπ€) β§ Β¬ (πΉβπ€) < (πΉβπ§))) |
84 | 78, 83 | bitr4i 278 |
. . . . . . . . . . . 12
β’ (Β¬
((πΉβπ§) < (πΉβπ€) β¨ (πΉβπ€) < (πΉβπ§)) β (Β¬ (πΉβπ§) < (πΉβπ€) β§ Β¬ (πΉβπ§)β‘
< (πΉβπ€))) |
85 | 77, 84 | syl6ibr 252 |
. . . . . . . . . . 11
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β (((πΌβπ§) = (πΌβπ€) β§ (π½βπ§) = (π½βπ€)) β Β¬ ((πΉβπ§) < (πΉβπ€) β¨ (πΉβπ€) < (πΉβπ§)))) |
86 | 71, 85 | mt2d 136 |
. . . . . . . . . 10
β’ (((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β§ π§ < π€) β Β¬ ((πΌβπ§) = (πΌβπ€) β§ (π½βπ§) = (π½βπ€))) |
87 | 86 | ex 414 |
. . . . . . . . 9
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β (π§ < π€ β Β¬ ((πΌβπ§) = (πΌβπ€) β§ (π½βπ§) = (π½βπ€)))) |
88 | 55, 87 | sylbird 260 |
. . . . . . . 8
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β (π€ β π§ β Β¬ ((πΌβπ§) = (πΌβπ€) β§ (π½βπ§) = (π½βπ€)))) |
89 | 88 | necon4ad 2960 |
. . . . . . 7
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β (((πΌβπ§) = (πΌβπ€) β§ (π½βπ§) = (π½βπ€)) β π€ = π§)) |
90 | 51, 89 | biimtrid 241 |
. . . . . 6
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β (β¨(πΌβπ§), (π½βπ§)β© = β¨(πΌβπ€), (π½βπ€)β© β π€ = π§)) |
91 | 48, 90 | sylbid 239 |
. . . . 5
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β ((πβπ§) = (πβπ€) β π€ = π§)) |
92 | 91, 26 | imbitrdi 250 |
. . . 4
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π) β§ π§ β€ π€)) β ((πβπ§) = (πβπ€) β π§ = π€)) |
93 | 19, 28, 32, 33, 92 | wlogle 11747 |
. . 3
β’ ((π β§ (π§ β (1...π) β§ π€ β (1...π))) β ((πβπ§) = (πβπ€) β π§ = π€)) |
94 | 93 | ralrimivva 3201 |
. 2
β’ (π β βπ§ β (1...π)βπ€ β (1...π)((πβπ§) = (πβπ€) β π§ = π€)) |
95 | | dff13 7254 |
. 2
β’ (π:(1...π)β1-1β(β Γ β) β (π:(1...π)βΆ(β Γ β) β§
βπ§ β (1...π)βπ€ β (1...π)((πβπ§) = (πβπ€) β π§ = π€))) |
96 | 14, 94, 95 | sylanbrc 584 |
1
β’ (π β π:(1...π)β1-1β(β Γ β)) |