Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem9 Structured version   Visualization version   GIF version

Theorem erdszelem9 35184
Description: Lemma for erdsze 35187. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.i 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.j 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.t 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
Assertion
Ref Expression
erdszelem9 (𝜑𝑇:(1...𝑁)–1-1→(ℕ × ℕ))
Distinct variable groups:   𝑥,𝑦,𝑛,𝐹   𝑛,𝐼,𝑥,𝑦   𝑛,𝐽,𝑥,𝑦   𝑛,𝑁,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦,𝑛)

Proof of Theorem erdszelem9
Dummy variables 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
2 erdsze.f . . . . . 6 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
3 erdszelem.i . . . . . 6 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
4 ltso 11339 . . . . . 6 < Or ℝ
51, 2, 3, 4erdszelem6 35181 . . . . 5 (𝜑𝐼:(1...𝑁)⟶ℕ)
65ffvelcdmda 7104 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐼𝑛) ∈ ℕ)
7 erdszelem.j . . . . . 6 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , < (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
8 gtso 11340 . . . . . 6 < Or ℝ
91, 2, 7, 8erdszelem6 35181 . . . . 5 (𝜑𝐽:(1...𝑁)⟶ℕ)
109ffvelcdmda 7104 . . . 4 ((𝜑𝑛 ∈ (1...𝑁)) → (𝐽𝑛) ∈ ℕ)
11 opelxpi 5726 . . . 4 (((𝐼𝑛) ∈ ℕ ∧ (𝐽𝑛) ∈ ℕ) → ⟨(𝐼𝑛), (𝐽𝑛)⟩ ∈ (ℕ × ℕ))
126, 10, 11syl2anc 584 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ⟨(𝐼𝑛), (𝐽𝑛)⟩ ∈ (ℕ × ℕ))
13 erdszelem.t . . 3 𝑇 = (𝑛 ∈ (1...𝑁) ↦ ⟨(𝐼𝑛), (𝐽𝑛)⟩)
1412, 13fmptd 7134 . 2 (𝜑𝑇:(1...𝑁)⟶(ℕ × ℕ))
15 fveq2 6907 . . . . . 6 (𝑎 = 𝑧 → (𝑇𝑎) = (𝑇𝑧))
16 fveq2 6907 . . . . . 6 (𝑏 = 𝑤 → (𝑇𝑏) = (𝑇𝑤))
1715, 16eqeqan12d 2749 . . . . 5 ((𝑎 = 𝑧𝑏 = 𝑤) → ((𝑇𝑎) = (𝑇𝑏) ↔ (𝑇𝑧) = (𝑇𝑤)))
18 eqeq12 2752 . . . . 5 ((𝑎 = 𝑧𝑏 = 𝑤) → (𝑎 = 𝑏𝑧 = 𝑤))
1917, 18imbi12d 344 . . . 4 ((𝑎 = 𝑧𝑏 = 𝑤) → (((𝑇𝑎) = (𝑇𝑏) → 𝑎 = 𝑏) ↔ ((𝑇𝑧) = (𝑇𝑤) → 𝑧 = 𝑤)))
20 fveq2 6907 . . . . . . 7 (𝑎 = 𝑤 → (𝑇𝑎) = (𝑇𝑤))
21 fveq2 6907 . . . . . . 7 (𝑏 = 𝑧 → (𝑇𝑏) = (𝑇𝑧))
2220, 21eqeqan12d 2749 . . . . . 6 ((𝑎 = 𝑤𝑏 = 𝑧) → ((𝑇𝑎) = (𝑇𝑏) ↔ (𝑇𝑤) = (𝑇𝑧)))
23 eqcom 2742 . . . . . 6 ((𝑇𝑤) = (𝑇𝑧) ↔ (𝑇𝑧) = (𝑇𝑤))
2422, 23bitrdi 287 . . . . 5 ((𝑎 = 𝑤𝑏 = 𝑧) → ((𝑇𝑎) = (𝑇𝑏) ↔ (𝑇𝑧) = (𝑇𝑤)))
25 eqeq12 2752 . . . . . 6 ((𝑎 = 𝑤𝑏 = 𝑧) → (𝑎 = 𝑏𝑤 = 𝑧))
26 eqcom 2742 . . . . . 6 (𝑤 = 𝑧𝑧 = 𝑤)
2725, 26bitrdi 287 . . . . 5 ((𝑎 = 𝑤𝑏 = 𝑧) → (𝑎 = 𝑏𝑧 = 𝑤))
2824, 27imbi12d 344 . . . 4 ((𝑎 = 𝑤𝑏 = 𝑧) → (((𝑇𝑎) = (𝑇𝑏) → 𝑎 = 𝑏) ↔ ((𝑇𝑧) = (𝑇𝑤) → 𝑧 = 𝑤)))
29 elfzelz 13561 . . . . . . 7 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℤ)
3029zred 12720 . . . . . 6 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℝ)
3130ssriv 3999 . . . . 5 (1...𝑁) ⊆ ℝ
3231a1i 11 . . . 4 (𝜑 → (1...𝑁) ⊆ ℝ)
33 biidd 262 . . . 4 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁))) → (((𝑇𝑧) = (𝑇𝑤) → 𝑧 = 𝑤) ↔ ((𝑇𝑧) = (𝑇𝑤) → 𝑧 = 𝑤)))
34 simpr1 1193 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → 𝑧 ∈ (1...𝑁))
35 fveq2 6907 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝐼𝑛) = (𝐼𝑧))
36 fveq2 6907 . . . . . . . . . 10 (𝑛 = 𝑧 → (𝐽𝑛) = (𝐽𝑧))
3735, 36opeq12d 4886 . . . . . . . . 9 (𝑛 = 𝑧 → ⟨(𝐼𝑛), (𝐽𝑛)⟩ = ⟨(𝐼𝑧), (𝐽𝑧)⟩)
38 opex 5475 . . . . . . . . 9 ⟨(𝐼𝑧), (𝐽𝑧)⟩ ∈ V
3937, 13, 38fvmpt 7016 . . . . . . . 8 (𝑧 ∈ (1...𝑁) → (𝑇𝑧) = ⟨(𝐼𝑧), (𝐽𝑧)⟩)
4034, 39syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → (𝑇𝑧) = ⟨(𝐼𝑧), (𝐽𝑧)⟩)
41 simpr2 1194 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → 𝑤 ∈ (1...𝑁))
42 fveq2 6907 . . . . . . . . . 10 (𝑛 = 𝑤 → (𝐼𝑛) = (𝐼𝑤))
43 fveq2 6907 . . . . . . . . . 10 (𝑛 = 𝑤 → (𝐽𝑛) = (𝐽𝑤))
4442, 43opeq12d 4886 . . . . . . . . 9 (𝑛 = 𝑤 → ⟨(𝐼𝑛), (𝐽𝑛)⟩ = ⟨(𝐼𝑤), (𝐽𝑤)⟩)
45 opex 5475 . . . . . . . . 9 ⟨(𝐼𝑤), (𝐽𝑤)⟩ ∈ V
4644, 13, 45fvmpt 7016 . . . . . . . 8 (𝑤 ∈ (1...𝑁) → (𝑇𝑤) = ⟨(𝐼𝑤), (𝐽𝑤)⟩)
4741, 46syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → (𝑇𝑤) = ⟨(𝐼𝑤), (𝐽𝑤)⟩)
4840, 47eqeq12d 2751 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → ((𝑇𝑧) = (𝑇𝑤) ↔ ⟨(𝐼𝑧), (𝐽𝑧)⟩ = ⟨(𝐼𝑤), (𝐽𝑤)⟩))
49 fvex 6920 . . . . . . . 8 (𝐼𝑧) ∈ V
50 fvex 6920 . . . . . . . 8 (𝐽𝑧) ∈ V
5149, 50opth 5487 . . . . . . 7 (⟨(𝐼𝑧), (𝐽𝑧)⟩ = ⟨(𝐼𝑤), (𝐽𝑤)⟩ ↔ ((𝐼𝑧) = (𝐼𝑤) ∧ (𝐽𝑧) = (𝐽𝑤)))
5234, 30syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → 𝑧 ∈ ℝ)
5331, 41sselid 3993 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → 𝑤 ∈ ℝ)
54 simpr3 1195 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → 𝑧𝑤)
5552, 53, 54leltned 11412 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → (𝑧 < 𝑤𝑤𝑧))
562adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → 𝐹:(1...𝑁)–1-1→ℝ)
57 f1fveq 7282 . . . . . . . . . . . . . . . . 17 ((𝐹:(1...𝑁)–1-1→ℝ ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁))) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
5856, 34, 41, 57syl12anc 837 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
5958, 26bitr4di 289 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑤 = 𝑧))
6059necon3bid 2983 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → ((𝐹𝑧) ≠ (𝐹𝑤) ↔ 𝑤𝑧))
6155, 60bitr4d 282 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → (𝑧 < 𝑤 ↔ (𝐹𝑧) ≠ (𝐹𝑤)))
6261biimpa 476 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → (𝐹𝑧) ≠ (𝐹𝑤))
63 f1f 6805 . . . . . . . . . . . . . . . 16 (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ)
642, 63syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:(1...𝑁)⟶ℝ)
6564ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → 𝐹:(1...𝑁)⟶ℝ)
6634adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (1...𝑁))
6765, 66ffvelcdmd 7105 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → (𝐹𝑧) ∈ ℝ)
6841adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → 𝑤 ∈ (1...𝑁))
6965, 68ffvelcdmd 7105 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → (𝐹𝑤) ∈ ℝ)
7067, 69lttri2d 11398 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → ((𝐹𝑧) ≠ (𝐹𝑤) ↔ ((𝐹𝑧) < (𝐹𝑤) ∨ (𝐹𝑤) < (𝐹𝑧))))
7162, 70mpbid 232 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → ((𝐹𝑧) < (𝐹𝑤) ∨ (𝐹𝑤) < (𝐹𝑧)))
721ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → 𝑁 ∈ ℕ)
732ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → 𝐹:(1...𝑁)–1-1→ℝ)
74 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → 𝑧 < 𝑤)
7572, 73, 3, 4, 66, 68, 74erdszelem8 35183 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → ((𝐼𝑧) = (𝐼𝑤) → ¬ (𝐹𝑧) < (𝐹𝑤)))
7672, 73, 7, 8, 66, 68, 74erdszelem8 35183 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → ((𝐽𝑧) = (𝐽𝑤) → ¬ (𝐹𝑧) < (𝐹𝑤)))
7775, 76anim12d 609 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → (((𝐼𝑧) = (𝐼𝑤) ∧ (𝐽𝑧) = (𝐽𝑤)) → (¬ (𝐹𝑧) < (𝐹𝑤) ∧ ¬ (𝐹𝑧) < (𝐹𝑤))))
78 ioran 985 . . . . . . . . . . . . 13 (¬ ((𝐹𝑧) < (𝐹𝑤) ∨ (𝐹𝑤) < (𝐹𝑧)) ↔ (¬ (𝐹𝑧) < (𝐹𝑤) ∧ ¬ (𝐹𝑤) < (𝐹𝑧)))
79 fvex 6920 . . . . . . . . . . . . . . . 16 (𝐹𝑧) ∈ V
80 fvex 6920 . . . . . . . . . . . . . . . 16 (𝐹𝑤) ∈ V
8179, 80brcnv 5896 . . . . . . . . . . . . . . 15 ((𝐹𝑧) < (𝐹𝑤) ↔ (𝐹𝑤) < (𝐹𝑧))
8281notbii 320 . . . . . . . . . . . . . 14 (¬ (𝐹𝑧) < (𝐹𝑤) ↔ ¬ (𝐹𝑤) < (𝐹𝑧))
8382anbi2i 623 . . . . . . . . . . . . 13 ((¬ (𝐹𝑧) < (𝐹𝑤) ∧ ¬ (𝐹𝑧) < (𝐹𝑤)) ↔ (¬ (𝐹𝑧) < (𝐹𝑤) ∧ ¬ (𝐹𝑤) < (𝐹𝑧)))
8478, 83bitr4i 278 . . . . . . . . . . . 12 (¬ ((𝐹𝑧) < (𝐹𝑤) ∨ (𝐹𝑤) < (𝐹𝑧)) ↔ (¬ (𝐹𝑧) < (𝐹𝑤) ∧ ¬ (𝐹𝑧) < (𝐹𝑤)))
8577, 84imbitrrdi 252 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → (((𝐼𝑧) = (𝐼𝑤) ∧ (𝐽𝑧) = (𝐽𝑤)) → ¬ ((𝐹𝑧) < (𝐹𝑤) ∨ (𝐹𝑤) < (𝐹𝑧))))
8671, 85mt2d 136 . . . . . . . . . 10 (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) ∧ 𝑧 < 𝑤) → ¬ ((𝐼𝑧) = (𝐼𝑤) ∧ (𝐽𝑧) = (𝐽𝑤)))
8786ex 412 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → (𝑧 < 𝑤 → ¬ ((𝐼𝑧) = (𝐼𝑤) ∧ (𝐽𝑧) = (𝐽𝑤))))
8855, 87sylbird 260 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → (𝑤𝑧 → ¬ ((𝐼𝑧) = (𝐼𝑤) ∧ (𝐽𝑧) = (𝐽𝑤))))
8988necon4ad 2957 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → (((𝐼𝑧) = (𝐼𝑤) ∧ (𝐽𝑧) = (𝐽𝑤)) → 𝑤 = 𝑧))
9051, 89biimtrid 242 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → (⟨(𝐼𝑧), (𝐽𝑧)⟩ = ⟨(𝐼𝑤), (𝐽𝑤)⟩ → 𝑤 = 𝑧))
9148, 90sylbid 240 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → ((𝑇𝑧) = (𝑇𝑤) → 𝑤 = 𝑧))
9291, 26imbitrdi 251 . . . 4 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧𝑤)) → ((𝑇𝑧) = (𝑇𝑤) → 𝑧 = 𝑤))
9319, 28, 32, 33, 92wlogle 11794 . . 3 ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁))) → ((𝑇𝑧) = (𝑇𝑤) → 𝑧 = 𝑤))
9493ralrimivva 3200 . 2 (𝜑 → ∀𝑧 ∈ (1...𝑁)∀𝑤 ∈ (1...𝑁)((𝑇𝑧) = (𝑇𝑤) → 𝑧 = 𝑤))
95 dff13 7275 . 2 (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) ↔ (𝑇:(1...𝑁)⟶(ℕ × ℕ) ∧ ∀𝑧 ∈ (1...𝑁)∀𝑤 ∈ (1...𝑁)((𝑇𝑧) = (𝑇𝑤) → 𝑧 = 𝑤)))
9614, 94, 95sylanbrc 583 1 (𝜑𝑇:(1...𝑁)–1-1→(ℕ × ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  wss 3963  𝒫 cpw 4605  cop 4637   class class class wbr 5148  cmpt 5231   × cxp 5687  ccnv 5688  cres 5691  cima 5692  wf 6559  1-1wf1 6560  cfv 6563   Isom wiso 6564  (class class class)co 7431  supcsup 9478  cr 11152  1c1 11154   < clt 11293  cle 11294  cn 12264  ...cfz 13544  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367
This theorem is referenced by:  erdszelem10  35185
  Copyright terms: Public domain W3C validator