Step | Hyp | Ref
| Expression |
1 | | erdsze.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | erdsze.f |
. . . . . 6
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
3 | | erdszelem.i |
. . . . . 6
⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
4 | | ltso 11055 |
. . . . . 6
⊢ < Or
ℝ |
5 | 1, 2, 3, 4 | erdszelem6 33158 |
. . . . 5
⊢ (𝜑 → 𝐼:(1...𝑁)⟶ℕ) |
6 | 5 | ffvelrnda 6961 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝐼‘𝑛) ∈ ℕ) |
7 | | erdszelem.j |
. . . . . 6
⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
8 | | gtso 11056 |
. . . . . 6
⊢ ◡ < Or ℝ |
9 | 1, 2, 7, 8 | erdszelem6 33158 |
. . . . 5
⊢ (𝜑 → 𝐽:(1...𝑁)⟶ℕ) |
10 | 9 | ffvelrnda 6961 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝐽‘𝑛) ∈ ℕ) |
11 | | opelxpi 5626 |
. . . 4
⊢ (((𝐼‘𝑛) ∈ ℕ ∧ (𝐽‘𝑛) ∈ ℕ) → 〈(𝐼‘𝑛), (𝐽‘𝑛)〉 ∈ (ℕ ×
ℕ)) |
12 | 6, 10, 11 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → 〈(𝐼‘𝑛), (𝐽‘𝑛)〉 ∈ (ℕ ×
ℕ)) |
13 | | erdszelem.t |
. . 3
⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) |
14 | 12, 13 | fmptd 6988 |
. 2
⊢ (𝜑 → 𝑇:(1...𝑁)⟶(ℕ ×
ℕ)) |
15 | | fveq2 6774 |
. . . . . 6
⊢ (𝑎 = 𝑧 → (𝑇‘𝑎) = (𝑇‘𝑧)) |
16 | | fveq2 6774 |
. . . . . 6
⊢ (𝑏 = 𝑤 → (𝑇‘𝑏) = (𝑇‘𝑤)) |
17 | 15, 16 | eqeqan12d 2752 |
. . . . 5
⊢ ((𝑎 = 𝑧 ∧ 𝑏 = 𝑤) → ((𝑇‘𝑎) = (𝑇‘𝑏) ↔ (𝑇‘𝑧) = (𝑇‘𝑤))) |
18 | | eqeq12 2755 |
. . . . 5
⊢ ((𝑎 = 𝑧 ∧ 𝑏 = 𝑤) → (𝑎 = 𝑏 ↔ 𝑧 = 𝑤)) |
19 | 17, 18 | imbi12d 345 |
. . . 4
⊢ ((𝑎 = 𝑧 ∧ 𝑏 = 𝑤) → (((𝑇‘𝑎) = (𝑇‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑧 = 𝑤))) |
20 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑎 = 𝑤 → (𝑇‘𝑎) = (𝑇‘𝑤)) |
21 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑏 = 𝑧 → (𝑇‘𝑏) = (𝑇‘𝑧)) |
22 | 20, 21 | eqeqan12d 2752 |
. . . . . 6
⊢ ((𝑎 = 𝑤 ∧ 𝑏 = 𝑧) → ((𝑇‘𝑎) = (𝑇‘𝑏) ↔ (𝑇‘𝑤) = (𝑇‘𝑧))) |
23 | | eqcom 2745 |
. . . . . 6
⊢ ((𝑇‘𝑤) = (𝑇‘𝑧) ↔ (𝑇‘𝑧) = (𝑇‘𝑤)) |
24 | 22, 23 | bitrdi 287 |
. . . . 5
⊢ ((𝑎 = 𝑤 ∧ 𝑏 = 𝑧) → ((𝑇‘𝑎) = (𝑇‘𝑏) ↔ (𝑇‘𝑧) = (𝑇‘𝑤))) |
25 | | eqeq12 2755 |
. . . . . 6
⊢ ((𝑎 = 𝑤 ∧ 𝑏 = 𝑧) → (𝑎 = 𝑏 ↔ 𝑤 = 𝑧)) |
26 | | eqcom 2745 |
. . . . . 6
⊢ (𝑤 = 𝑧 ↔ 𝑧 = 𝑤) |
27 | 25, 26 | bitrdi 287 |
. . . . 5
⊢ ((𝑎 = 𝑤 ∧ 𝑏 = 𝑧) → (𝑎 = 𝑏 ↔ 𝑧 = 𝑤)) |
28 | 24, 27 | imbi12d 345 |
. . . 4
⊢ ((𝑎 = 𝑤 ∧ 𝑏 = 𝑧) → (((𝑇‘𝑎) = (𝑇‘𝑏) → 𝑎 = 𝑏) ↔ ((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑧 = 𝑤))) |
29 | | elfzelz 13256 |
. . . . . . 7
⊢ (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℤ) |
30 | 29 | zred 12426 |
. . . . . 6
⊢ (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℝ) |
31 | 30 | ssriv 3925 |
. . . . 5
⊢
(1...𝑁) ⊆
ℝ |
32 | 31 | a1i 11 |
. . . 4
⊢ (𝜑 → (1...𝑁) ⊆ ℝ) |
33 | | biidd 261 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁))) → (((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑧 = 𝑤) ↔ ((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑧 = 𝑤))) |
34 | | simpr1 1193 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → 𝑧 ∈ (1...𝑁)) |
35 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑧 → (𝐼‘𝑛) = (𝐼‘𝑧)) |
36 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑧 → (𝐽‘𝑛) = (𝐽‘𝑧)) |
37 | 35, 36 | opeq12d 4812 |
. . . . . . . . 9
⊢ (𝑛 = 𝑧 → 〈(𝐼‘𝑛), (𝐽‘𝑛)〉 = 〈(𝐼‘𝑧), (𝐽‘𝑧)〉) |
38 | | opex 5379 |
. . . . . . . . 9
⊢
〈(𝐼‘𝑧), (𝐽‘𝑧)〉 ∈ V |
39 | 37, 13, 38 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑧 ∈ (1...𝑁) → (𝑇‘𝑧) = 〈(𝐼‘𝑧), (𝐽‘𝑧)〉) |
40 | 34, 39 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → (𝑇‘𝑧) = 〈(𝐼‘𝑧), (𝐽‘𝑧)〉) |
41 | | simpr2 1194 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → 𝑤 ∈ (1...𝑁)) |
42 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑤 → (𝐼‘𝑛) = (𝐼‘𝑤)) |
43 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑤 → (𝐽‘𝑛) = (𝐽‘𝑤)) |
44 | 42, 43 | opeq12d 4812 |
. . . . . . . . 9
⊢ (𝑛 = 𝑤 → 〈(𝐼‘𝑛), (𝐽‘𝑛)〉 = 〈(𝐼‘𝑤), (𝐽‘𝑤)〉) |
45 | | opex 5379 |
. . . . . . . . 9
⊢
〈(𝐼‘𝑤), (𝐽‘𝑤)〉 ∈ V |
46 | 44, 13, 45 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑤 ∈ (1...𝑁) → (𝑇‘𝑤) = 〈(𝐼‘𝑤), (𝐽‘𝑤)〉) |
47 | 41, 46 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → (𝑇‘𝑤) = 〈(𝐼‘𝑤), (𝐽‘𝑤)〉) |
48 | 40, 47 | eqeq12d 2754 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → ((𝑇‘𝑧) = (𝑇‘𝑤) ↔ 〈(𝐼‘𝑧), (𝐽‘𝑧)〉 = 〈(𝐼‘𝑤), (𝐽‘𝑤)〉)) |
49 | | fvex 6787 |
. . . . . . . 8
⊢ (𝐼‘𝑧) ∈ V |
50 | | fvex 6787 |
. . . . . . . 8
⊢ (𝐽‘𝑧) ∈ V |
51 | 49, 50 | opth 5391 |
. . . . . . 7
⊢
(〈(𝐼‘𝑧), (𝐽‘𝑧)〉 = 〈(𝐼‘𝑤), (𝐽‘𝑤)〉 ↔ ((𝐼‘𝑧) = (𝐼‘𝑤) ∧ (𝐽‘𝑧) = (𝐽‘𝑤))) |
52 | 34, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → 𝑧 ∈ ℝ) |
53 | 31, 41 | sselid 3919 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → 𝑤 ∈ ℝ) |
54 | | simpr3 1195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → 𝑧 ≤ 𝑤) |
55 | 52, 53, 54 | leltned 11128 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → (𝑧 < 𝑤 ↔ 𝑤 ≠ 𝑧)) |
56 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → 𝐹:(1...𝑁)–1-1→ℝ) |
57 | | f1fveq 7135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:(1...𝑁)–1-1→ℝ ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁))) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
58 | 56, 34, 41, 57 | syl12anc 834 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
59 | 58, 26 | bitr4di 289 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑤 = 𝑧)) |
60 | 59 | necon3bid 2988 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑤) ↔ 𝑤 ≠ 𝑧)) |
61 | 55, 60 | bitr4d 281 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → (𝑧 < 𝑤 ↔ (𝐹‘𝑧) ≠ (𝐹‘𝑤))) |
62 | 61 | biimpa 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → (𝐹‘𝑧) ≠ (𝐹‘𝑤)) |
63 | | f1f 6670 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ) |
64 | 2, 63 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:(1...𝑁)⟶ℝ) |
65 | 64 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → 𝐹:(1...𝑁)⟶ℝ) |
66 | 34 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → 𝑧 ∈ (1...𝑁)) |
67 | 65, 66 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → (𝐹‘𝑧) ∈ ℝ) |
68 | 41 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → 𝑤 ∈ (1...𝑁)) |
69 | 65, 68 | ffvelrnd 6962 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → (𝐹‘𝑤) ∈ ℝ) |
70 | 67, 69 | lttri2d 11114 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → ((𝐹‘𝑧) ≠ (𝐹‘𝑤) ↔ ((𝐹‘𝑧) < (𝐹‘𝑤) ∨ (𝐹‘𝑤) < (𝐹‘𝑧)))) |
71 | 62, 70 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → ((𝐹‘𝑧) < (𝐹‘𝑤) ∨ (𝐹‘𝑤) < (𝐹‘𝑧))) |
72 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → 𝑁 ∈ ℕ) |
73 | 2 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → 𝐹:(1...𝑁)–1-1→ℝ) |
74 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → 𝑧 < 𝑤) |
75 | 72, 73, 3, 4, 66, 68, 74 | erdszelem8 33160 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → ((𝐼‘𝑧) = (𝐼‘𝑤) → ¬ (𝐹‘𝑧) < (𝐹‘𝑤))) |
76 | 72, 73, 7, 8, 66, 68, 74 | erdszelem8 33160 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → ((𝐽‘𝑧) = (𝐽‘𝑤) → ¬ (𝐹‘𝑧)◡
< (𝐹‘𝑤))) |
77 | 75, 76 | anim12d 609 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → (((𝐼‘𝑧) = (𝐼‘𝑤) ∧ (𝐽‘𝑧) = (𝐽‘𝑤)) → (¬ (𝐹‘𝑧) < (𝐹‘𝑤) ∧ ¬ (𝐹‘𝑧)◡
< (𝐹‘𝑤)))) |
78 | | ioran 981 |
. . . . . . . . . . . . 13
⊢ (¬
((𝐹‘𝑧) < (𝐹‘𝑤) ∨ (𝐹‘𝑤) < (𝐹‘𝑧)) ↔ (¬ (𝐹‘𝑧) < (𝐹‘𝑤) ∧ ¬ (𝐹‘𝑤) < (𝐹‘𝑧))) |
79 | | fvex 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹‘𝑧) ∈ V |
80 | | fvex 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹‘𝑤) ∈ V |
81 | 79, 80 | brcnv 5791 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑧)◡
< (𝐹‘𝑤) ↔ (𝐹‘𝑤) < (𝐹‘𝑧)) |
82 | 81 | notbii 320 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝐹‘𝑧)◡
< (𝐹‘𝑤) ↔ ¬ (𝐹‘𝑤) < (𝐹‘𝑧)) |
83 | 82 | anbi2i 623 |
. . . . . . . . . . . . 13
⊢ ((¬
(𝐹‘𝑧) < (𝐹‘𝑤) ∧ ¬ (𝐹‘𝑧)◡
< (𝐹‘𝑤)) ↔ (¬ (𝐹‘𝑧) < (𝐹‘𝑤) ∧ ¬ (𝐹‘𝑤) < (𝐹‘𝑧))) |
84 | 78, 83 | bitr4i 277 |
. . . . . . . . . . . 12
⊢ (¬
((𝐹‘𝑧) < (𝐹‘𝑤) ∨ (𝐹‘𝑤) < (𝐹‘𝑧)) ↔ (¬ (𝐹‘𝑧) < (𝐹‘𝑤) ∧ ¬ (𝐹‘𝑧)◡
< (𝐹‘𝑤))) |
85 | 77, 84 | syl6ibr 251 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → (((𝐼‘𝑧) = (𝐼‘𝑤) ∧ (𝐽‘𝑧) = (𝐽‘𝑤)) → ¬ ((𝐹‘𝑧) < (𝐹‘𝑤) ∨ (𝐹‘𝑤) < (𝐹‘𝑧)))) |
86 | 71, 85 | mt2d 136 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) ∧ 𝑧 < 𝑤) → ¬ ((𝐼‘𝑧) = (𝐼‘𝑤) ∧ (𝐽‘𝑧) = (𝐽‘𝑤))) |
87 | 86 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → (𝑧 < 𝑤 → ¬ ((𝐼‘𝑧) = (𝐼‘𝑤) ∧ (𝐽‘𝑧) = (𝐽‘𝑤)))) |
88 | 55, 87 | sylbird 259 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → (𝑤 ≠ 𝑧 → ¬ ((𝐼‘𝑧) = (𝐼‘𝑤) ∧ (𝐽‘𝑧) = (𝐽‘𝑤)))) |
89 | 88 | necon4ad 2962 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → (((𝐼‘𝑧) = (𝐼‘𝑤) ∧ (𝐽‘𝑧) = (𝐽‘𝑤)) → 𝑤 = 𝑧)) |
90 | 51, 89 | syl5bi 241 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → (〈(𝐼‘𝑧), (𝐽‘𝑧)〉 = 〈(𝐼‘𝑤), (𝐽‘𝑤)〉 → 𝑤 = 𝑧)) |
91 | 48, 90 | sylbid 239 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → ((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑤 = 𝑧)) |
92 | 91, 26 | syl6ib 250 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁) ∧ 𝑧 ≤ 𝑤)) → ((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑧 = 𝑤)) |
93 | 19, 28, 32, 33, 92 | wlogle 11508 |
. . 3
⊢ ((𝜑 ∧ (𝑧 ∈ (1...𝑁) ∧ 𝑤 ∈ (1...𝑁))) → ((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑧 = 𝑤)) |
94 | 93 | ralrimivva 3123 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ (1...𝑁)∀𝑤 ∈ (1...𝑁)((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑧 = 𝑤)) |
95 | | dff13 7128 |
. 2
⊢ (𝑇:(1...𝑁)–1-1→(ℕ × ℕ) ↔ (𝑇:(1...𝑁)⟶(ℕ × ℕ) ∧
∀𝑧 ∈ (1...𝑁)∀𝑤 ∈ (1...𝑁)((𝑇‘𝑧) = (𝑇‘𝑤) → 𝑧 = 𝑤))) |
96 | 14, 94, 95 | sylanbrc 583 |
1
⊢ (𝜑 → 𝑇:(1...𝑁)–1-1→(ℕ × ℕ)) |