MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem11 Structured version   Visualization version   GIF version

Theorem 4sqlem11 16067
Description: Lemma for 4sq 16076. Use the pigeonhole principle to show that the sets {𝑚↑2 ∣ 𝑚 ∈ (0...𝑁)} and {-1 − 𝑛↑2 ∣ 𝑛 ∈ (0...𝑁)} have a common element, mod 𝑃. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sqlem11.5 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlem11.6 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlem11 (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑣,𝑛,𝐴   𝑛,𝐹   𝑢,𝑛,𝑚,𝑣,𝑁   𝑃,𝑚,𝑛,𝑢,𝑣   𝜑,𝑚,𝑛,𝑢,𝑣   𝑆,𝑚,𝑛,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑢,𝑚)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑚)   𝑁(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem11
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13095 . . . . . 6 (𝜑 → (0...(𝑃 − 1)) ∈ Fin)
2 4sqlem11.5 . . . . . . . 8 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
3 elfzelz 12663 . . . . . . . . . . . . 13 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
4 zsqcl 13257 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
53, 4syl 17 . . . . . . . . . . . 12 (𝑚 ∈ (0...𝑁) → (𝑚↑2) ∈ ℤ)
6 4sq.4 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
7 prmnn 15797 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
86, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
9 zmodfz 13015 . . . . . . . . . . . 12 (((𝑚↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))
105, 8, 9syl2anr 590 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))
11 eleq1a 2854 . . . . . . . . . . 11 (((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
1210, 11syl 17 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
1312rexlimdva 3213 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
1413abssdv 3897 . . . . . . . 8 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0...(𝑃 − 1)))
152, 14syl5eqss 3868 . . . . . . 7 (𝜑𝐴 ⊆ (0...(𝑃 − 1)))
16 prmz 15798 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
176, 16syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℤ)
18 peano2zm 11776 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
1917, 18syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℤ)
2019zcnd 11839 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℂ)
2120addid2d 10579 . . . . . . . . . . . 12 (𝜑 → (0 + (𝑃 − 1)) = (𝑃 − 1))
2221oveq1d 6939 . . . . . . . . . . 11 (𝜑 → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣))
2322adantr 474 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣))
2415sselda 3821 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → 𝑣 ∈ (0...(𝑃 − 1)))
25 fzrev3i 12729 . . . . . . . . . . 11 (𝑣 ∈ (0...(𝑃 − 1)) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1)))
2624, 25syl 17 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1)))
2723, 26eqeltrrd 2860 . . . . . . . . 9 ((𝜑𝑣𝐴) → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1)))
28 4sqlem11.6 . . . . . . . . 9 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
2927, 28fmptd 6650 . . . . . . . 8 (𝜑𝐹:𝐴⟶(0...(𝑃 − 1)))
3029frnd 6300 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (0...(𝑃 − 1)))
3115, 30unssd 4012 . . . . . 6 (𝜑 → (𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1)))
321, 31ssfid 8473 . . . . 5 (𝜑 → (𝐴 ∪ ran 𝐹) ∈ Fin)
33 hashcl 13466 . . . . 5 ((𝐴 ∪ ran 𝐹) ∈ Fin → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℕ0)
3432, 33syl 17 . . . 4 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℕ0)
3534nn0red 11707 . . 3 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℝ)
3617zred 11838 . . 3 (𝜑𝑃 ∈ ℝ)
37 ssdomg 8289 . . . . . 6 ((0...(𝑃 − 1)) ∈ Fin → ((𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1)) → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
381, 31, 37sylc 65 . . . . 5 (𝜑 → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))
39 hashdom 13487 . . . . . 6 (((𝐴 ∪ ran 𝐹) ∈ Fin ∧ (0...(𝑃 − 1)) ∈ Fin) → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
4032, 1, 39syl2anc 579 . . . . 5 (𝜑 → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
4138, 40mpbird 249 . . . 4 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))))
42 fz01en 12690 . . . . . . 7 (𝑃 ∈ ℤ → (0...(𝑃 − 1)) ≈ (1...𝑃))
4317, 42syl 17 . . . . . 6 (𝜑 → (0...(𝑃 − 1)) ≈ (1...𝑃))
44 fzfid 13095 . . . . . . 7 (𝜑 → (1...𝑃) ∈ Fin)
45 hashen 13456 . . . . . . 7 (((0...(𝑃 − 1)) ∈ Fin ∧ (1...𝑃) ∈ Fin) → ((♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃)))
461, 44, 45syl2anc 579 . . . . . 6 (𝜑 → ((♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃)))
4743, 46mpbird 249 . . . . 5 (𝜑 → (♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)))
488nnnn0d 11706 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
49 hashfz1 13455 . . . . . 6 (𝑃 ∈ ℕ0 → (♯‘(1...𝑃)) = 𝑃)
5048, 49syl 17 . . . . 5 (𝜑 → (♯‘(1...𝑃)) = 𝑃)
5147, 50eqtrd 2814 . . . 4 (𝜑 → (♯‘(0...(𝑃 − 1))) = 𝑃)
5241, 51breqtrd 4914 . . 3 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ 𝑃)
5335, 36, 52lensymd 10529 . 2 (𝜑 → ¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))
5436adantr 474 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 ∈ ℝ)
5554ltp1d 11310 . . . . 5 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (𝑃 + 1))
56 4sq.2 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
5756nncnd 11396 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
58 1cnd 10373 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
5957, 57, 58, 58add4d 10606 . . . . . . . 8 (𝜑 → ((𝑁 + 𝑁) + (1 + 1)) = ((𝑁 + 1) + (𝑁 + 1)))
60 4sq.3 . . . . . . . . . 10 (𝜑𝑃 = ((2 · 𝑁) + 1))
6160oveq1d 6939 . . . . . . . . 9 (𝜑 → (𝑃 + 1) = (((2 · 𝑁) + 1) + 1))
62 2cn 11454 . . . . . . . . . . 11 2 ∈ ℂ
63 mulcl 10358 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) ∈ ℂ)
6462, 57, 63sylancr 581 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
6564, 58, 58addassd 10401 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
66572timesd 11629 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
6766oveq1d 6939 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) + (1 + 1)) = ((𝑁 + 𝑁) + (1 + 1)))
6861, 65, 673eqtrd 2818 . . . . . . . 8 (𝜑 → (𝑃 + 1) = ((𝑁 + 𝑁) + (1 + 1)))
6910ex 403 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑚 ∈ (0...𝑁) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))))
708adantr 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℕ)
713ad2antrl 718 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℤ)
7271, 4syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚↑2) ∈ ℤ)
73 elfzelz 12663 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 ∈ (0...𝑁) → 𝑢 ∈ ℤ)
7473ad2antll 719 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℤ)
75 zsqcl 13257 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ ℤ → (𝑢↑2) ∈ ℤ)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢↑2) ∈ ℤ)
77 moddvds 15402 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧ (𝑢↑2) ∈ ℤ) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2))))
7870, 72, 76, 77syl3anc 1439 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2))))
7971zcnd 11839 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℂ)
8074zcnd 11839 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℂ)
81 subsq 13295 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚𝑢)))
8279, 80, 81syl2anc 579 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚𝑢)))
8382breq2d 4900 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚↑2) − (𝑢↑2)) ↔ 𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢))))
846adantr 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℙ)
8571, 74zaddcld 11842 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℤ)
8671, 74zsubcld 11843 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢) ∈ ℤ)
87 euclemma 15833 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℙ ∧ (𝑚 + 𝑢) ∈ ℤ ∧ (𝑚𝑢) ∈ ℤ) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
8884, 85, 86, 87syl3anc 1439 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
8978, 83, 883bitrd 297 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
9085zred 11838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℝ)
91 2re 11453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
9256nnred 11395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℝ)
93 remulcl 10359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
9491, 92, 93sylancr 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (2 · 𝑁) ∈ ℝ)
9594adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) ∈ ℝ)
9684, 16syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℤ)
9796zred 11838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℝ)
9871zred 11838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℝ)
9974zred 11838 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℝ)
10092adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℝ)
101 elfzle2 12666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑚 ∈ (0...𝑁) → 𝑚𝑁)
102101ad2antrl 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚𝑁)
103 elfzle2 12666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ (0...𝑁) → 𝑢𝑁)
104103ad2antll 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢𝑁)
10598, 99, 100, 100, 102, 104le2addd 10996 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (𝑁 + 𝑁))
10657adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℂ)
1071062timesd 11629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) = (𝑁 + 𝑁))
108105, 107breqtrrd 4916 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (2 · 𝑁))
10994ltp1d 11310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2 · 𝑁) < ((2 · 𝑁) + 1))
110109, 60breqtrrd 4916 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (2 · 𝑁) < 𝑃)
111110adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) < 𝑃)
11290, 95, 97, 108, 111lelttrd 10536 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) < 𝑃)
11390, 97ltnled 10525 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢)))
114112, 113mpbid 224 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (𝑚 + 𝑢))
115114adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ≤ (𝑚 + 𝑢))
11617ad2antrr 716 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 𝑃 ∈ ℤ)
11785adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℤ)
118 1red 10379 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ∈ ℝ)
119 nn0abscl 14463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚𝑢) ∈ ℤ → (abs‘(𝑚𝑢)) ∈ ℕ0)
12086, 119syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ∈ ℕ0)
121120nn0red 11707 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ∈ ℝ)
122121adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℝ)
123117zred 11838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℝ)
124120adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℕ0)
125124nn0zd 11836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℤ)
12686zcnd 11839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢) ∈ ℂ)
127126adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚𝑢) ∈ ℂ)
12879, 80subeq0ad 10746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚𝑢) = 0 ↔ 𝑚 = 𝑢))
129128necon3bid 3013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚𝑢) ≠ 0 ↔ 𝑚𝑢))
130129biimpar 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚𝑢) ≠ 0)
131127, 130absrpcld 14599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℝ+)
132131rpgt0d 12188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 0 < (abs‘(𝑚𝑢)))
133 elnnz 11742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs‘(𝑚𝑢)) ∈ ℕ ↔ ((abs‘(𝑚𝑢)) ∈ ℤ ∧ 0 < (abs‘(𝑚𝑢))))
134125, 132, 133sylanbrc 578 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℕ)
135134nnge1d 11427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ≤ (abs‘(𝑚𝑢)))
136 0cnd 10371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ∈ ℂ)
13779, 80, 136abs3difd 14611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ≤ ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))))
13879subid1d 10725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 0) = 𝑚)
139138fveq2d 6452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = (abs‘𝑚))
140 elfzle1 12665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚)
141140ad2antrl 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑚)
14298, 141absidd 14573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑚) = 𝑚)
143139, 142eqtrd 2814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = 𝑚)
144 0cn 10370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 0 ∈ ℂ
145 abssub 14477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0)))
146144, 80, 145sylancr 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0)))
14780subid1d 10725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢 − 0) = 𝑢)
148147fveq2d 6452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑢 − 0)) = (abs‘𝑢))
149 elfzle1 12665 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑢 ∈ (0...𝑁) → 0 ≤ 𝑢)
150149ad2antll 719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑢)
15199, 150absidd 14573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑢) = 𝑢)
152146, 148, 1513eqtrd 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = 𝑢)
153143, 152oveq12d 6942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))) = (𝑚 + 𝑢))
154137, 153breqtrd 4914 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢))
155154adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢))
156118, 122, 123, 135, 155letrd 10535 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ≤ (𝑚 + 𝑢))
157 elnnz1 11759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚 + 𝑢) ∈ ℕ ↔ ((𝑚 + 𝑢) ∈ ℤ ∧ 1 ≤ (𝑚 + 𝑢)))
158117, 156, 157sylanbrc 578 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℕ)
159 dvdsle 15443 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℤ ∧ (𝑚 + 𝑢) ∈ ℕ) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢)))
160116, 158, 159syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢)))
161115, 160mtod 190 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ∥ (𝑚 + 𝑢))
162161ex 403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢)))
163162necon4ad 2988 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢))
164 dvdsabsb 15412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℤ ∧ (𝑚𝑢) ∈ ℤ) → (𝑃 ∥ (𝑚𝑢) ↔ 𝑃 ∥ (abs‘(𝑚𝑢))))
16596, 86, 164syl2anc 579 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚𝑢) ↔ 𝑃 ∥ (abs‘(𝑚𝑢))))
166 letr 10472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℝ ∧ (abs‘(𝑚𝑢)) ∈ ℝ ∧ (𝑚 + 𝑢) ∈ ℝ) → ((𝑃 ≤ (abs‘(𝑚𝑢)) ∧ (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
16797, 121, 90, 166syl3anc 1439 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ≤ (abs‘(𝑚𝑢)) ∧ (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
168154, 167mpan2d 684 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ≤ (abs‘(𝑚𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
169114, 168mtod 190 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (abs‘(𝑚𝑢)))
170169adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ≤ (abs‘(𝑚𝑢)))
17196adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 𝑃 ∈ ℤ)
172 dvdsle 15443 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℤ ∧ (abs‘(𝑚𝑢)) ∈ ℕ) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑃 ≤ (abs‘(𝑚𝑢))))
173171, 134, 172syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑃 ≤ (abs‘(𝑚𝑢))))
174170, 173mtod 190 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ∥ (abs‘(𝑚𝑢)))
175174ex 403 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚𝑢))))
176175necon4ad 2988 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑚 = 𝑢))
177165, 176sylbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚𝑢) → 𝑚 = 𝑢))
178163, 177jaod 848 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢)) → 𝑚 = 𝑢))
17989, 178sylbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) → 𝑚 = 𝑢))
180 oveq1 6931 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑢 → (𝑚↑2) = (𝑢↑2))
181180oveq1d 6939 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑢 → ((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃))
182179, 181impbid1 217 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢))
183182ex 403 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁)) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢)))
18469, 183dom2lem 8283 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)))
185 f1f1orn 6404 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)) → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
186184, 185syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
187 eqid 2778 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))
188187rnmpt 5619 . . . . . . . . . . . . . . . . 17 ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
1892, 188eqtr4i 2805 . . . . . . . . . . . . . . . 16 𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))
190 f1oeq3 6384 . . . . . . . . . . . . . . . 16 (𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) → ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))))
191189, 190ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
192186, 191sylibr 226 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴)
193 ovex 6956 . . . . . . . . . . . . . . 15 (0...𝑁) ∈ V
194193f1oen 8264 . . . . . . . . . . . . . 14 ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴 → (0...𝑁) ≈ 𝐴)
195192, 194syl 17 . . . . . . . . . . . . 13 (𝜑 → (0...𝑁) ≈ 𝐴)
196195ensymd 8294 . . . . . . . . . . . 12 (𝜑𝐴 ≈ (0...𝑁))
197 ax-1cn 10332 . . . . . . . . . . . . . . 15 1 ∈ ℂ
198 pncan 10630 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
19957, 197, 198sylancl 580 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
200199oveq2d 6940 . . . . . . . . . . . . 13 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
20156nnnn0d 11706 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
202 peano2nn0 11688 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
203201, 202syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℕ0)
204203nn0zd 11836 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℤ)
205 fz01en 12690 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℤ → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1)))
206204, 205syl 17 . . . . . . . . . . . . 13 (𝜑 → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1)))
207200, 206eqbrtrrd 4912 . . . . . . . . . . . 12 (𝜑 → (0...𝑁) ≈ (1...(𝑁 + 1)))
208 entr 8295 . . . . . . . . . . . 12 ((𝐴 ≈ (0...𝑁) ∧ (0...𝑁) ≈ (1...(𝑁 + 1))) → 𝐴 ≈ (1...(𝑁 + 1)))
209196, 207, 208syl2anc 579 . . . . . . . . . . 11 (𝜑𝐴 ≈ (1...(𝑁 + 1)))
2101, 15ssfid 8473 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
211 fzfid 13095 . . . . . . . . . . . 12 (𝜑 → (1...(𝑁 + 1)) ∈ Fin)
212 hashen 13456 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (1...(𝑁 + 1)) ∈ Fin) → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1))))
213210, 211, 212syl2anc 579 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1))))
214209, 213mpbird 249 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = (♯‘(1...(𝑁 + 1))))
215 hashfz1 13455 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
216203, 215syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
217214, 216eqtrd 2814 . . . . . . . . 9 (𝜑 → (♯‘𝐴) = (𝑁 + 1))
21827ex 403 . . . . . . . . . . . . . 14 (𝜑 → (𝑣𝐴 → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1))))
21920adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → (𝑃 − 1) ∈ ℂ)
220 fzssuz 12703 . . . . . . . . . . . . . . . . . . . 20 (0...(𝑃 − 1)) ⊆ (ℤ‘0)
221 uzssz 12016 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘0) ⊆ ℤ
222 zsscn 11740 . . . . . . . . . . . . . . . . . . . . 21 ℤ ⊆ ℂ
223221, 222sstri 3830 . . . . . . . . . . . . . . . . . . . 20 (ℤ‘0) ⊆ ℂ
224220, 223sstri 3830 . . . . . . . . . . . . . . . . . . 19 (0...(𝑃 − 1)) ⊆ ℂ
22515, 224syl6ss 3833 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℂ)
226225sselda 3821 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
227226adantrr 707 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → 𝑣 ∈ ℂ)
228225sselda 3821 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝑘 ∈ ℂ)
229228adantrl 706 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → 𝑘 ∈ ℂ)
230219, 227, 229subcanad 10779 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘))
231230ex 403 . . . . . . . . . . . . . 14 (𝜑 → ((𝑣𝐴𝑘𝐴) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘)))
232218, 231dom2lem 8283 . . . . . . . . . . . . 13 (𝜑 → (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1)))
233 f1eq1 6348 . . . . . . . . . . . . . 14 (𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)) → (𝐹:𝐴1-1→(0...(𝑃 − 1)) ↔ (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1))))
23428, 233ax-mp 5 . . . . . . . . . . . . 13 (𝐹:𝐴1-1→(0...(𝑃 − 1)) ↔ (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1)))
235232, 234sylibr 226 . . . . . . . . . . . 12 (𝜑𝐹:𝐴1-1→(0...(𝑃 − 1)))
236 f1f1orn 6404 . . . . . . . . . . . 12 (𝐹:𝐴1-1→(0...(𝑃 − 1)) → 𝐹:𝐴1-1-onto→ran 𝐹)
237235, 236syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐴1-1-onto→ran 𝐹)
238210, 237hasheqf1od 13463 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = (♯‘ran 𝐹))
239238, 217eqtr3d 2816 . . . . . . . . 9 (𝜑 → (♯‘ran 𝐹) = (𝑁 + 1))
240217, 239oveq12d 6942 . . . . . . . 8 (𝜑 → ((♯‘𝐴) + (♯‘ran 𝐹)) = ((𝑁 + 1) + (𝑁 + 1)))
24159, 68, 2403eqtr4d 2824 . . . . . . 7 (𝜑 → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹)))
242241adantr 474 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹)))
243210adantr 474 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝐴 ∈ Fin)
2441, 30ssfid 8473 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ Fin)
245244adantr 474 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → ran 𝐹 ∈ Fin)
246 simpr 479 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝐴 ∩ ran 𝐹) = ∅)
247 hashun 13490 . . . . . . 7 ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹)))
248243, 245, 246, 247syl3anc 1439 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹)))
249242, 248eqtr4d 2817 . . . . 5 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = (♯‘(𝐴 ∪ ran 𝐹)))
25055, 249breqtrd 4914 . . . 4 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))
251250ex 403 . . 3 (𝜑 → ((𝐴 ∩ ran 𝐹) = ∅ → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))))
252251necon3bd 2983 . 2 (𝜑 → (¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)) → (𝐴 ∩ ran 𝐹) ≠ ∅))
25353, 252mpd 15 1 (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  {cab 2763  wne 2969  wrex 3091  cun 3790  cin 3791  wss 3792  c0 4141   class class class wbr 4888  cmpt 4967  ran crn 5358  1-1wf1 6134  1-1-ontowf1o 6136  cfv 6137  (class class class)co 6924  cen 8240  cdom 8241  Fincfn 8243  cc 10272  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279   < clt 10413  cle 10414  cmin 10608  cn 11378  2c2 11434  0cn0 11646  cz 11732  cuz 11996  ...cfz 12647   mod cmo 12991  cexp 13182  chash 13439  abscabs 14385  cdvds 15391  cprime 15794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-inf 8639  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-xnn0 11719  df-z 11733  df-uz 11997  df-rp 12142  df-fz 12648  df-fl 12916  df-mod 12992  df-seq 13124  df-exp 13183  df-hash 13440  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-dvds 15392  df-gcd 15627  df-prm 15795
This theorem is referenced by:  4sqlem12  16068
  Copyright terms: Public domain W3C validator