Step | Hyp | Ref
| Expression |
1 | | fzfid 13693 |
. . . . . 6
⊢ (𝜑 → (0...(𝑃 − 1)) ∈ Fin) |
2 | | 4sqlem11.5 |
. . . . . . . 8
⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
3 | | elfzelz 13256 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ) |
4 | | zsqcl 13848 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈
ℤ) |
5 | 3, 4 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...𝑁) → (𝑚↑2) ∈ ℤ) |
6 | | 4sq.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℙ) |
7 | | prmnn 16379 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℕ) |
9 | | zmodfz 13613 |
. . . . . . . . . . . 12
⊢ (((𝑚↑2) ∈ ℤ ∧
𝑃 ∈ ℕ) →
((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))) |
10 | 5, 8, 9 | syl2anr 597 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))) |
11 | | eleq1a 2834 |
. . . . . . . . . . 11
⊢ (((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) |
12 | 10, 11 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (0...𝑁)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) |
13 | 12 | rexlimdva 3213 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1)))) |
14 | 13 | abssdv 4002 |
. . . . . . . 8
⊢ (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0...(𝑃 − 1))) |
15 | 2, 14 | eqsstrid 3969 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ (0...(𝑃 − 1))) |
16 | | prmz 16380 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
17 | 6, 16 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ ℤ) |
18 | | peano2zm 12363 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 − 1) ∈ ℤ) |
20 | 19 | zcnd 12427 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 − 1) ∈ ℂ) |
21 | 20 | addid2d 11176 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 + (𝑃 − 1)) = (𝑃 − 1)) |
22 | 21 | oveq1d 7290 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣)) |
23 | 22 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣)) |
24 | 15 | sselda 3921 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ (0...(𝑃 − 1))) |
25 | | fzrev3i 13323 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (0...(𝑃 − 1)) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1))) |
26 | 24, 25 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1))) |
27 | 23, 26 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1))) |
28 | | 4sqlem11.6 |
. . . . . . . . 9
⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) |
29 | 27, 28 | fmptd 6988 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶(0...(𝑃 − 1))) |
30 | 29 | frnd 6608 |
. . . . . . 7
⊢ (𝜑 → ran 𝐹 ⊆ (0...(𝑃 − 1))) |
31 | 15, 30 | unssd 4120 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1))) |
32 | 1, 31 | ssfid 9042 |
. . . . 5
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ∈ Fin) |
33 | | hashcl 14071 |
. . . . 5
⊢ ((𝐴 ∪ ran 𝐹) ∈ Fin → (♯‘(𝐴 ∪ ran 𝐹)) ∈
ℕ0) |
34 | 32, 33 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈
ℕ0) |
35 | 34 | nn0red 12294 |
. . 3
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℝ) |
36 | 17 | zred 12426 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℝ) |
37 | | ssdomg 8786 |
. . . . . 6
⊢
((0...(𝑃 − 1))
∈ Fin → ((𝐴 ∪
ran 𝐹) ⊆ (0...(𝑃 − 1)) → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))) |
38 | 1, 31, 37 | sylc 65 |
. . . . 5
⊢ (𝜑 → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))) |
39 | | hashdom 14094 |
. . . . . 6
⊢ (((𝐴 ∪ ran 𝐹) ∈ Fin ∧ (0...(𝑃 − 1)) ∈ Fin) →
((♯‘(𝐴 ∪
ran 𝐹)) ≤
(♯‘(0...(𝑃
− 1))) ↔ (𝐴
∪ ran 𝐹) ≼
(0...(𝑃 −
1)))) |
40 | 32, 1, 39 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))) |
41 | 38, 40 | mpbird 256 |
. . . 4
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1)))) |
42 | | fz01en 13284 |
. . . . . . 7
⊢ (𝑃 ∈ ℤ →
(0...(𝑃 − 1)) ≈
(1...𝑃)) |
43 | 17, 42 | syl 17 |
. . . . . 6
⊢ (𝜑 → (0...(𝑃 − 1)) ≈ (1...𝑃)) |
44 | | fzfid 13693 |
. . . . . . 7
⊢ (𝜑 → (1...𝑃) ∈ Fin) |
45 | | hashen 14061 |
. . . . . . 7
⊢
(((0...(𝑃 −
1)) ∈ Fin ∧ (1...𝑃) ∈ Fin) →
((♯‘(0...(𝑃
− 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃))) |
46 | 1, 44, 45 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((♯‘(0...(𝑃
− 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃))) |
47 | 43, 46 | mpbird 256 |
. . . . 5
⊢ (𝜑 → (♯‘(0...(𝑃 − 1))) =
(♯‘(1...𝑃))) |
48 | 8 | nnnn0d 12293 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
49 | | hashfz1 14060 |
. . . . . 6
⊢ (𝑃 ∈ ℕ0
→ (♯‘(1...𝑃)) = 𝑃) |
50 | 48, 49 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘(1...𝑃)) = 𝑃) |
51 | 47, 50 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (♯‘(0...(𝑃 − 1))) = 𝑃) |
52 | 41, 51 | breqtrd 5100 |
. . 3
⊢ (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ 𝑃) |
53 | 35, 36, 52 | lensymd 11126 |
. 2
⊢ (𝜑 → ¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))) |
54 | 36 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 ∈ ℝ) |
55 | 54 | ltp1d 11905 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (𝑃 + 1)) |
56 | | 4sq.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℕ) |
57 | 56 | nncnd 11989 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℂ) |
58 | | 1cnd 10970 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
59 | 57, 57, 58, 58 | add4d 11203 |
. . . . . . . 8
⊢ (𝜑 → ((𝑁 + 𝑁) + (1 + 1)) = ((𝑁 + 1) + (𝑁 + 1))) |
60 | | 4sq.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 = ((2 · 𝑁) + 1)) |
61 | 60 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 + 1) = (((2 · 𝑁) + 1) + 1)) |
62 | | 2cn 12048 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
63 | | mulcl 10955 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑁
∈ ℂ) → (2 · 𝑁) ∈ ℂ) |
64 | 62, 57, 63 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) ∈
ℂ) |
65 | 64, 58, 58 | addassd 10997 |
. . . . . . . . 9
⊢ (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1))) |
66 | 57 | 2timesd 12216 |
. . . . . . . . . 10
⊢ (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁)) |
67 | 66 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝜑 → ((2 · 𝑁) + (1 + 1)) = ((𝑁 + 𝑁) + (1 + 1))) |
68 | 61, 65, 67 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 + 1) = ((𝑁 + 𝑁) + (1 + 1))) |
69 | 10 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))) |
70 | 8 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℕ) |
71 | 3 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℤ) |
72 | 71, 4 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚↑2) ∈ ℤ) |
73 | | elfzelz 13256 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 ∈ (0...𝑁) → 𝑢 ∈ ℤ) |
74 | 73 | ad2antll 726 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℤ) |
75 | | zsqcl 13848 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 ∈ ℤ → (𝑢↑2) ∈
ℤ) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢↑2) ∈ ℤ) |
77 | | moddvds 15974 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧
(𝑢↑2) ∈ ℤ)
→ (((𝑚↑2) mod
𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2)))) |
78 | 70, 72, 76, 77 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2)))) |
79 | 71 | zcnd 12427 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℂ) |
80 | 74 | zcnd 12427 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℂ) |
81 | | subsq 13926 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚 − 𝑢))) |
82 | 79, 80, 81 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚 − 𝑢))) |
83 | 82 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚↑2) − (𝑢↑2)) ↔ 𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)))) |
84 | 6 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℙ) |
85 | 71, 74 | zaddcld 12430 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℤ) |
86 | 71, 74 | zsubcld 12431 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 𝑢) ∈ ℤ) |
87 | | euclemma 16418 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑃 ∈ ℙ ∧ (𝑚 + 𝑢) ∈ ℤ ∧ (𝑚 − 𝑢) ∈ ℤ) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) |
88 | 84, 85, 86, 87 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚 − 𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) |
89 | 78, 83, 88 | 3bitrd 305 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)))) |
90 | 85 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℝ) |
91 | | 2re 12047 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 2 ∈
ℝ |
92 | 56 | nnred 11988 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℝ) |
93 | | remulcl 10956 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℝ) → (2 · 𝑁) ∈ ℝ) |
94 | 91, 92, 93 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (2 · 𝑁) ∈
ℝ) |
95 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) ∈ ℝ) |
96 | 84, 16 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℤ) |
97 | 96 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℝ) |
98 | 71 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℝ) |
99 | 74 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℝ) |
100 | 92 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℝ) |
101 | | elfzle2 13260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ≤ 𝑁) |
102 | 101 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ≤ 𝑁) |
103 | | elfzle2 13260 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑢 ∈ (0...𝑁) → 𝑢 ≤ 𝑁) |
104 | 103 | ad2antll 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ≤ 𝑁) |
105 | 98, 99, 100, 100, 102, 104 | le2addd 11594 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (𝑁 + 𝑁)) |
106 | 57 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℂ) |
107 | 106 | 2timesd 12216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) = (𝑁 + 𝑁)) |
108 | 105, 107 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (2 · 𝑁)) |
109 | 94 | ltp1d 11905 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (2 · 𝑁) < ((2 · 𝑁) + 1)) |
110 | 109, 60 | breqtrrd 5102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (2 · 𝑁) < 𝑃) |
111 | 110 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) < 𝑃) |
112 | 90, 95, 97, 108, 111 | lelttrd 11133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) < 𝑃) |
113 | 90, 97 | ltnled 11122 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢))) |
114 | 112, 113 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (𝑚 + 𝑢)) |
115 | 114 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ≤ (𝑚 + 𝑢)) |
116 | 17 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 𝑃 ∈ ℤ) |
117 | 85 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℤ) |
118 | | 1red 10976 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ∈ ℝ) |
119 | | nn0abscl 15024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑚 − 𝑢) ∈ ℤ → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) |
120 | 86, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) |
121 | 120 | nn0red 12294 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ∈ ℝ) |
122 | 121 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℝ) |
123 | 117 | zred 12426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℝ) |
124 | 120 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈
ℕ0) |
125 | 124 | nn0zd 12424 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℤ) |
126 | 86 | zcnd 12427 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 𝑢) ∈ ℂ) |
127 | 126 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 − 𝑢) ∈ ℂ) |
128 | 79, 80 | subeq0ad 11342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 − 𝑢) = 0 ↔ 𝑚 = 𝑢)) |
129 | 128 | necon3bid 2988 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 − 𝑢) ≠ 0 ↔ 𝑚 ≠ 𝑢)) |
130 | 129 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 − 𝑢) ≠ 0) |
131 | 127, 130 | absrpcld 15160 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈
ℝ+) |
132 | 131 | rpgt0d 12775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 0 < (abs‘(𝑚 − 𝑢))) |
133 | | elnnz 12329 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((abs‘(𝑚
− 𝑢)) ∈ ℕ
↔ ((abs‘(𝑚
− 𝑢)) ∈ ℤ
∧ 0 < (abs‘(𝑚
− 𝑢)))) |
134 | 125, 132,
133 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ∈ ℕ) |
135 | 134 | nnge1d 12021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ≤ (abs‘(𝑚 − 𝑢))) |
136 | | 0cnd 10968 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ∈
ℂ) |
137 | 79, 80, 136 | abs3difd 15172 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ≤ ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢)))) |
138 | 79 | subid1d 11321 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 0) = 𝑚) |
139 | 138 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = (abs‘𝑚)) |
140 | | elfzle1 13259 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚) |
141 | 140 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑚) |
142 | 98, 141 | absidd 15134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑚) = 𝑚) |
143 | 139, 142 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = 𝑚) |
144 | | 0cn 10967 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 0 ∈
ℂ |
145 | | abssub 15038 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((0
∈ ℂ ∧ 𝑢
∈ ℂ) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0))) |
146 | 144, 80, 145 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0))) |
147 | 80 | subid1d 11321 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢 − 0) = 𝑢) |
148 | 147 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑢 − 0)) = (abs‘𝑢)) |
149 | | elfzle1 13259 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑢 ∈ (0...𝑁) → 0 ≤ 𝑢) |
150 | 149 | ad2antll 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑢) |
151 | 99, 150 | absidd 15134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑢) = 𝑢) |
152 | 146, 148,
151 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = 𝑢) |
153 | 143, 152 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))) = (𝑚 + 𝑢)) |
154 | 137, 153 | breqtrd 5100 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) |
155 | 154 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) |
156 | 118, 122,
123, 135, 155 | letrd 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 1 ≤ (𝑚 + 𝑢)) |
157 | | elnnz1 12346 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 + 𝑢) ∈ ℕ ↔ ((𝑚 + 𝑢) ∈ ℤ ∧ 1 ≤ (𝑚 + 𝑢))) |
158 | 117, 156,
157 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑚 + 𝑢) ∈ ℕ) |
159 | | dvdsle 16019 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑃 ∈ ℤ ∧ (𝑚 + 𝑢) ∈ ℕ) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢))) |
160 | 116, 158,
159 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢))) |
161 | 115, 160 | mtod 197 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ∥ (𝑚 + 𝑢)) |
162 | 161 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢))) |
163 | 162 | necon4ad 2962 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢)) |
164 | | dvdsabsb 15985 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ ℤ ∧ (𝑚 − 𝑢) ∈ ℤ) → (𝑃 ∥ (𝑚 − 𝑢) ↔ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) |
165 | 96, 86, 164 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 − 𝑢) ↔ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) |
166 | | letr 11069 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑃 ∈ ℝ ∧
(abs‘(𝑚 − 𝑢)) ∈ ℝ ∧ (𝑚 + 𝑢) ∈ ℝ) → ((𝑃 ≤ (abs‘(𝑚 − 𝑢)) ∧ (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) |
167 | 97, 121, 90, 166 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ≤ (abs‘(𝑚 − 𝑢)) ∧ (abs‘(𝑚 − 𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) |
168 | 154, 167 | mpan2d 691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ≤ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢))) |
169 | 114, 168 | mtod 197 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (abs‘(𝑚 − 𝑢))) |
170 | 169 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ≤ (abs‘(𝑚 − 𝑢))) |
171 | 96 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → 𝑃 ∈ ℤ) |
172 | | dvdsle 16019 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃 ∈ ℤ ∧
(abs‘(𝑚 − 𝑢)) ∈ ℕ) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (abs‘(𝑚 − 𝑢)))) |
173 | 171, 134,
172 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑃 ≤ (abs‘(𝑚 − 𝑢)))) |
174 | 170, 173 | mtod 197 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚 ≠ 𝑢) → ¬ 𝑃 ∥ (abs‘(𝑚 − 𝑢))) |
175 | 174 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 ≠ 𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚 − 𝑢)))) |
176 | 175 | necon4ad 2962 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (abs‘(𝑚 − 𝑢)) → 𝑚 = 𝑢)) |
177 | 165, 176 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 − 𝑢) → 𝑚 = 𝑢)) |
178 | 163, 177 | jaod 856 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚 − 𝑢)) → 𝑚 = 𝑢)) |
179 | 89, 178 | sylbid 239 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) → 𝑚 = 𝑢)) |
180 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑢 → (𝑚↑2) = (𝑢↑2)) |
181 | 180 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑢 → ((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃)) |
182 | 179, 181 | impbid1 224 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢)) |
183 | 182 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁)) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢))) |
184 | 69, 183 | dom2lem 8780 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1))) |
185 | | f1f1orn 6727 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)) → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) |
186 | 184, 185 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) |
187 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) |
188 | 187 | rnmpt 5864 |
. . . . . . . . . . . . . . . . 17
⊢ ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
189 | 2, 188 | eqtr4i 2769 |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) |
190 | | f1oeq3 6706 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) → ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))) |
191 | 189, 190 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran
(𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))) |
192 | 186, 191 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴) |
193 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢
(0...𝑁) ∈
V |
194 | 193 | f1oen 8761 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→𝐴 → (0...𝑁) ≈ 𝐴) |
195 | 192, 194 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...𝑁) ≈ 𝐴) |
196 | 195 | ensymd 8791 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≈ (0...𝑁)) |
197 | | ax-1cn 10929 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
198 | | pncan 11227 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
199 | 57, 197, 198 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
200 | 199 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
201 | 56 | nnnn0d 12293 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
202 | | peano2nn0 12273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
203 | 201, 202 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
204 | 203 | nn0zd 12424 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
205 | | fz01en 13284 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 + 1) ∈ ℤ →
(0...((𝑁 + 1) − 1))
≈ (1...(𝑁 +
1))) |
206 | 204, 205 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1))) |
207 | 200, 206 | eqbrtrrd 5098 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑁) ≈ (1...(𝑁 + 1))) |
208 | | entr 8792 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≈ (0...𝑁) ∧ (0...𝑁) ≈ (1...(𝑁 + 1))) → 𝐴 ≈ (1...(𝑁 + 1))) |
209 | 196, 207,
208 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≈ (1...(𝑁 + 1))) |
210 | 1, 15 | ssfid 9042 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ Fin) |
211 | | fzfid 13693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...(𝑁 + 1)) ∈ Fin) |
212 | | hashen 14061 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Fin ∧ (1...(𝑁 + 1)) ∈ Fin) →
((♯‘𝐴) =
(♯‘(1...(𝑁 +
1))) ↔ 𝐴 ≈
(1...(𝑁 +
1)))) |
213 | 210, 211,
212 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1)))) |
214 | 209, 213 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐴) = (♯‘(1...(𝑁 + 1)))) |
215 | | hashfz1 14060 |
. . . . . . . . . . 11
⊢ ((𝑁 + 1) ∈ ℕ0
→ (♯‘(1...(𝑁 + 1))) = (𝑁 + 1)) |
216 | 203, 215 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1)) |
217 | 214, 216 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝐴) = (𝑁 + 1)) |
218 | 27 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑣 ∈ 𝐴 → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1)))) |
219 | 20 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (𝑃 − 1) ∈ ℂ) |
220 | | fzssuz 13297 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0...(𝑃 − 1))
⊆ (ℤ≥‘0) |
221 | | uzssz 12603 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤ≥‘0) ⊆ ℤ |
222 | | zsscn 12327 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℤ
⊆ ℂ |
223 | 221, 222 | sstri 3930 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(ℤ≥‘0) ⊆ ℂ |
224 | 220, 223 | sstri 3930 |
. . . . . . . . . . . . . . . . . . 19
⊢
(0...(𝑃 − 1))
⊆ ℂ |
225 | 15, 224 | sstrdi 3933 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
226 | 225 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℂ) |
227 | 226 | adantrr 714 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑣 ∈ ℂ) |
228 | 225 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℂ) |
229 | 228 | adantrl 713 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ ℂ) |
230 | 219, 227,
229 | subcanad 11375 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘)) |
231 | 230 | ex 413 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑣 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘))) |
232 | 218, 231 | dom2lem 8780 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1))) |
233 | | f1eq1 6665 |
. . . . . . . . . . . . . 14
⊢ (𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) → (𝐹:𝐴–1-1→(0...(𝑃 − 1)) ↔ (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1)))) |
234 | 28, 233 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴–1-1→(0...(𝑃 − 1)) ↔ (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴–1-1→(0...(𝑃 − 1))) |
235 | 232, 234 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:𝐴–1-1→(0...(𝑃 − 1))) |
236 | | f1f1orn 6727 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–1-1→(0...(𝑃 − 1)) → 𝐹:𝐴–1-1-onto→ran
𝐹) |
237 | 235, 236 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
238 | 210, 237 | hasheqf1od 14068 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝐴) = (♯‘ran 𝐹)) |
239 | 238, 217 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘ran 𝐹) = (𝑁 + 1)) |
240 | 217, 239 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘𝐴) + (♯‘ran 𝐹)) = ((𝑁 + 1) + (𝑁 + 1))) |
241 | 59, 68, 240 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (𝜑 → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹))) |
242 | 241 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹))) |
243 | 210 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝐴 ∈ Fin) |
244 | 1, 30 | ssfid 9042 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
245 | 244 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → ran 𝐹 ∈ Fin) |
246 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝐴 ∩ ran 𝐹) = ∅) |
247 | | hashun 14097 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹))) |
248 | 243, 245,
246, 247 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹))) |
249 | 242, 248 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = (♯‘(𝐴 ∪ ran 𝐹))) |
250 | 55, 249 | breqtrd 5100 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))) |
251 | 250 | ex 413 |
. . 3
⊢ (𝜑 → ((𝐴 ∩ ran 𝐹) = ∅ → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))) |
252 | 251 | necon3bd 2957 |
. 2
⊢ (𝜑 → (¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)) → (𝐴 ∩ ran 𝐹) ≠ ∅)) |
253 | 53, 252 | mpd 15 |
1
⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅) |