MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem11 Structured version   Visualization version   GIF version

Theorem 4sqlem11 16867
Description: Lemma for 4sq 16876. Use the pigeonhole principle to show that the sets {𝑚↑2 ∣ 𝑚 ∈ (0...𝑁)} and {-1 − 𝑛↑2 ∣ 𝑛 ∈ (0...𝑁)} have a common element, mod 𝑃. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sqlem11.5 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlem11.6 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqlem11 (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑣,𝑛,𝐴   𝑛,𝐹   𝑢,𝑛,𝑚,𝑣,𝑁   𝑃,𝑚,𝑛,𝑢,𝑣   𝜑,𝑚,𝑛,𝑢,𝑣   𝑆,𝑚,𝑛,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑢,𝑚)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑚)   𝑁(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem11
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13880 . . . . . 6 (𝜑 → (0...(𝑃 − 1)) ∈ Fin)
2 4sqlem11.5 . . . . . . . 8 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
3 elfzelz 13424 . . . . . . . . . . . . 13 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
4 zsqcl 14036 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
53, 4syl 17 . . . . . . . . . . . 12 (𝑚 ∈ (0...𝑁) → (𝑚↑2) ∈ ℤ)
6 4sq.4 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
7 prmnn 16585 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
86, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
9 zmodfz 13797 . . . . . . . . . . . 12 (((𝑚↑2) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))
105, 8, 9syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)))
11 eleq1a 2826 . . . . . . . . . . 11 (((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
1210, 11syl 17 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
1312rexlimdva 3133 . . . . . . . . 9 (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ (0...(𝑃 − 1))))
1413abssdv 4014 . . . . . . . 8 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ (0...(𝑃 − 1)))
152, 14eqsstrid 3968 . . . . . . 7 (𝜑𝐴 ⊆ (0...(𝑃 − 1)))
16 prmz 16586 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
176, 16syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℤ)
18 peano2zm 12515 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
1917, 18syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 1) ∈ ℤ)
2019zcnd 12578 . . . . . . . . . . . . 13 (𝜑 → (𝑃 − 1) ∈ ℂ)
2120addlidd 11314 . . . . . . . . . . . 12 (𝜑 → (0 + (𝑃 − 1)) = (𝑃 − 1))
2221oveq1d 7361 . . . . . . . . . . 11 (𝜑 → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣))
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((0 + (𝑃 − 1)) − 𝑣) = ((𝑃 − 1) − 𝑣))
2415sselda 3929 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → 𝑣 ∈ (0...(𝑃 − 1)))
25 fzrev3i 13491 . . . . . . . . . . 11 (𝑣 ∈ (0...(𝑃 − 1)) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1)))
2624, 25syl 17 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((0 + (𝑃 − 1)) − 𝑣) ∈ (0...(𝑃 − 1)))
2723, 26eqeltrrd 2832 . . . . . . . . 9 ((𝜑𝑣𝐴) → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1)))
28 4sqlem11.6 . . . . . . . . 9 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
2927, 28fmptd 7047 . . . . . . . 8 (𝜑𝐹:𝐴⟶(0...(𝑃 − 1)))
3029frnd 6659 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ (0...(𝑃 − 1)))
3115, 30unssd 4139 . . . . . 6 (𝜑 → (𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1)))
321, 31ssfid 9153 . . . . 5 (𝜑 → (𝐴 ∪ ran 𝐹) ∈ Fin)
33 hashcl 14263 . . . . 5 ((𝐴 ∪ ran 𝐹) ∈ Fin → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℕ0)
3432, 33syl 17 . . . 4 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℕ0)
3534nn0red 12443 . . 3 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ∈ ℝ)
3617zred 12577 . . 3 (𝜑𝑃 ∈ ℝ)
37 ssdomg 8922 . . . . . 6 ((0...(𝑃 − 1)) ∈ Fin → ((𝐴 ∪ ran 𝐹) ⊆ (0...(𝑃 − 1)) → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
381, 31, 37sylc 65 . . . . 5 (𝜑 → (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1)))
39 hashdom 14286 . . . . . 6 (((𝐴 ∪ ran 𝐹) ∈ Fin ∧ (0...(𝑃 − 1)) ∈ Fin) → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
4032, 1, 39syl2anc 584 . . . . 5 (𝜑 → ((♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))) ↔ (𝐴 ∪ ran 𝐹) ≼ (0...(𝑃 − 1))))
4138, 40mpbird 257 . . . 4 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ (♯‘(0...(𝑃 − 1))))
42 fz01en 13452 . . . . . . 7 (𝑃 ∈ ℤ → (0...(𝑃 − 1)) ≈ (1...𝑃))
4317, 42syl 17 . . . . . 6 (𝜑 → (0...(𝑃 − 1)) ≈ (1...𝑃))
44 fzfid 13880 . . . . . . 7 (𝜑 → (1...𝑃) ∈ Fin)
45 hashen 14254 . . . . . . 7 (((0...(𝑃 − 1)) ∈ Fin ∧ (1...𝑃) ∈ Fin) → ((♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃)))
461, 44, 45syl2anc 584 . . . . . 6 (𝜑 → ((♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)) ↔ (0...(𝑃 − 1)) ≈ (1...𝑃)))
4743, 46mpbird 257 . . . . 5 (𝜑 → (♯‘(0...(𝑃 − 1))) = (♯‘(1...𝑃)))
488nnnn0d 12442 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
49 hashfz1 14253 . . . . . 6 (𝑃 ∈ ℕ0 → (♯‘(1...𝑃)) = 𝑃)
5048, 49syl 17 . . . . 5 (𝜑 → (♯‘(1...𝑃)) = 𝑃)
5147, 50eqtrd 2766 . . . 4 (𝜑 → (♯‘(0...(𝑃 − 1))) = 𝑃)
5241, 51breqtrd 5115 . . 3 (𝜑 → (♯‘(𝐴 ∪ ran 𝐹)) ≤ 𝑃)
5335, 36, 52lensymd 11264 . 2 (𝜑 → ¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))
5436adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 ∈ ℝ)
5554ltp1d 12052 . . . . 5 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (𝑃 + 1))
56 4sq.2 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
5756nncnd 12141 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
58 1cnd 11107 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
5957, 57, 58, 58add4d 11342 . . . . . . . 8 (𝜑 → ((𝑁 + 𝑁) + (1 + 1)) = ((𝑁 + 1) + (𝑁 + 1)))
60 4sq.3 . . . . . . . . . 10 (𝜑𝑃 = ((2 · 𝑁) + 1))
6160oveq1d 7361 . . . . . . . . 9 (𝜑 → (𝑃 + 1) = (((2 · 𝑁) + 1) + 1))
62 2cn 12200 . . . . . . . . . . 11 2 ∈ ℂ
63 mulcl 11090 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (2 · 𝑁) ∈ ℂ)
6462, 57, 63sylancr 587 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ∈ ℂ)
6564, 58, 58addassd 11134 . . . . . . . . 9 (𝜑 → (((2 · 𝑁) + 1) + 1) = ((2 · 𝑁) + (1 + 1)))
66572timesd 12364 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
6766oveq1d 7361 . . . . . . . . 9 (𝜑 → ((2 · 𝑁) + (1 + 1)) = ((𝑁 + 𝑁) + (1 + 1)))
6861, 65, 673eqtrd 2770 . . . . . . . 8 (𝜑 → (𝑃 + 1) = ((𝑁 + 𝑁) + (1 + 1)))
6910ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑚 ∈ (0...𝑁) → ((𝑚↑2) mod 𝑃) ∈ (0...(𝑃 − 1))))
708adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℕ)
713ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℤ)
7271, 4syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚↑2) ∈ ℤ)
73 elfzelz 13424 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 ∈ (0...𝑁) → 𝑢 ∈ ℤ)
7473ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℤ)
75 zsqcl 14036 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ ℤ → (𝑢↑2) ∈ ℤ)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢↑2) ∈ ℤ)
77 moddvds 16174 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℕ ∧ (𝑚↑2) ∈ ℤ ∧ (𝑢↑2) ∈ ℤ) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2))))
7870, 72, 76, 77syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑃 ∥ ((𝑚↑2) − (𝑢↑2))))
7971zcnd 12578 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℂ)
8074zcnd 12578 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℂ)
81 subsq 14117 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℂ ∧ 𝑢 ∈ ℂ) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚𝑢)))
8279, 80, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚↑2) − (𝑢↑2)) = ((𝑚 + 𝑢) · (𝑚𝑢)))
8382breq2d 5101 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚↑2) − (𝑢↑2)) ↔ 𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢))))
846adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℙ)
8571, 74zaddcld 12581 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℤ)
8671, 74zsubcld 12582 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢) ∈ ℤ)
87 euclemma 16624 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℙ ∧ (𝑚 + 𝑢) ∈ ℤ ∧ (𝑚𝑢) ∈ ℤ) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
8884, 85, 86, 87syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ ((𝑚 + 𝑢) · (𝑚𝑢)) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
8978, 83, 883bitrd 305 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ (𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢))))
9085zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ∈ ℝ)
91 2re 12199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℝ
9256nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℝ)
93 remulcl 11091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 · 𝑁) ∈ ℝ)
9491, 92, 93sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (2 · 𝑁) ∈ ℝ)
9594adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) ∈ ℝ)
9684, 16syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℤ)
9796zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑃 ∈ ℝ)
9871zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚 ∈ ℝ)
9974zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢 ∈ ℝ)
10092adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℝ)
101 elfzle2 13428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑚 ∈ (0...𝑁) → 𝑚𝑁)
102101ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑚𝑁)
103 elfzle2 13428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ (0...𝑁) → 𝑢𝑁)
104103ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑢𝑁)
10598, 99, 100, 100, 102, 104le2addd 11736 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (𝑁 + 𝑁))
10657adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 𝑁 ∈ ℂ)
1071062timesd 12364 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) = (𝑁 + 𝑁))
108105, 107breqtrrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) ≤ (2 · 𝑁))
10994ltp1d 12052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (2 · 𝑁) < ((2 · 𝑁) + 1))
110109, 60breqtrrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (2 · 𝑁) < 𝑃)
111110adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (2 · 𝑁) < 𝑃)
11290, 95, 97, 108, 111lelttrd 11271 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 + 𝑢) < 𝑃)
11390, 97ltnled 11260 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚 + 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (𝑚 + 𝑢)))
114112, 113mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (𝑚 + 𝑢))
115114adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ≤ (𝑚 + 𝑢))
11617ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 𝑃 ∈ ℤ)
11785adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℤ)
118 1red 11113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ∈ ℝ)
119 nn0abscl 15219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑚𝑢) ∈ ℤ → (abs‘(𝑚𝑢)) ∈ ℕ0)
12086, 119syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ∈ ℕ0)
121120nn0red 12443 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ∈ ℝ)
122121adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℝ)
123117zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℝ)
124120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℕ0)
125124nn0zd 12494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℤ)
12686zcnd 12578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢) ∈ ℂ)
127126adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚𝑢) ∈ ℂ)
12879, 80subeq0ad 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚𝑢) = 0 ↔ 𝑚 = 𝑢))
129128necon3bid 2972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑚𝑢) ≠ 0 ↔ 𝑚𝑢))
130129biimpar 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚𝑢) ≠ 0)
131127, 130absrpcld 15358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℝ+)
132131rpgt0d 12937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 0 < (abs‘(𝑚𝑢)))
133 elnnz 12478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((abs‘(𝑚𝑢)) ∈ ℕ ↔ ((abs‘(𝑚𝑢)) ∈ ℤ ∧ 0 < (abs‘(𝑚𝑢))))
134125, 132, 133sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ∈ ℕ)
135134nnge1d 12173 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ≤ (abs‘(𝑚𝑢)))
136 0cnd 11105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ∈ ℂ)
13779, 80, 136abs3difd 15370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ≤ ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))))
13879subid1d 11461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚 − 0) = 𝑚)
139138fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = (abs‘𝑚))
140 elfzle1 13427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑚 ∈ (0...𝑁) → 0 ≤ 𝑚)
141140ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑚)
14298, 141absidd 15330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑚) = 𝑚)
143139, 142eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚 − 0)) = 𝑚)
144 0cn 11104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 0 ∈ ℂ
145 abssub 15234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((0 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0)))
146144, 80, 145sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = (abs‘(𝑢 − 0)))
14780subid1d 11461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑢 − 0) = 𝑢)
148147fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑢 − 0)) = (abs‘𝑢))
149 elfzle1 13427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑢 ∈ (0...𝑁) → 0 ≤ 𝑢)
150149ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → 0 ≤ 𝑢)
15199, 150absidd 15330 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘𝑢) = 𝑢)
152146, 148, 1513eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(0 − 𝑢)) = 𝑢)
153143, 152oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((abs‘(𝑚 − 0)) + (abs‘(0 − 𝑢))) = (𝑚 + 𝑢))
154137, 153breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢))
155154adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢))
156118, 122, 123, 135, 155letrd 11270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 1 ≤ (𝑚 + 𝑢))
157 elnnz1 12498 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚 + 𝑢) ∈ ℕ ↔ ((𝑚 + 𝑢) ∈ ℤ ∧ 1 ≤ (𝑚 + 𝑢)))
158117, 156, 157sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑚 + 𝑢) ∈ ℕ)
159 dvdsle 16221 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℤ ∧ (𝑚 + 𝑢) ∈ ℕ) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢)))
160116, 158, 159syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑃 ≤ (𝑚 + 𝑢)))
161115, 160mtod 198 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ∥ (𝑚 + 𝑢))
162161ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢 → ¬ 𝑃 ∥ (𝑚 + 𝑢)))
163162necon4ad 2947 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚 + 𝑢) → 𝑚 = 𝑢))
164 dvdsabsb 16186 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℤ ∧ (𝑚𝑢) ∈ ℤ) → (𝑃 ∥ (𝑚𝑢) ↔ 𝑃 ∥ (abs‘(𝑚𝑢))))
16596, 86, 164syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚𝑢) ↔ 𝑃 ∥ (abs‘(𝑚𝑢))))
166 letr 11207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑃 ∈ ℝ ∧ (abs‘(𝑚𝑢)) ∈ ℝ ∧ (𝑚 + 𝑢) ∈ ℝ) → ((𝑃 ≤ (abs‘(𝑚𝑢)) ∧ (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
16797, 121, 90, 166syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ≤ (abs‘(𝑚𝑢)) ∧ (abs‘(𝑚𝑢)) ≤ (𝑚 + 𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
168154, 167mpan2d 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ≤ (abs‘(𝑚𝑢)) → 𝑃 ≤ (𝑚 + 𝑢)))
169114, 168mtod 198 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ¬ 𝑃 ≤ (abs‘(𝑚𝑢)))
170169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ≤ (abs‘(𝑚𝑢)))
17196adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → 𝑃 ∈ ℤ)
172 dvdsle 16221 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℤ ∧ (abs‘(𝑚𝑢)) ∈ ℕ) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑃 ≤ (abs‘(𝑚𝑢))))
173171, 134, 172syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑃 ≤ (abs‘(𝑚𝑢))))
174170, 173mtod 198 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) ∧ 𝑚𝑢) → ¬ 𝑃 ∥ (abs‘(𝑚𝑢)))
175174ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑚𝑢 → ¬ 𝑃 ∥ (abs‘(𝑚𝑢))))
176175necon4ad 2947 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (abs‘(𝑚𝑢)) → 𝑚 = 𝑢))
177165, 176sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (𝑃 ∥ (𝑚𝑢) → 𝑚 = 𝑢))
178163, 177jaod 859 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → ((𝑃 ∥ (𝑚 + 𝑢) ∨ 𝑃 ∥ (𝑚𝑢)) → 𝑚 = 𝑢))
17989, 178sylbid 240 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) → 𝑚 = 𝑢))
180 oveq1 7353 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑢 → (𝑚↑2) = (𝑢↑2))
181180oveq1d 7361 . . . . . . . . . . . . . . . . . . 19 (𝑚 = 𝑢 → ((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃))
182179, 181impbid1 225 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁))) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢))
183182ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑚 ∈ (0...𝑁) ∧ 𝑢 ∈ (0...𝑁)) → (((𝑚↑2) mod 𝑃) = ((𝑢↑2) mod 𝑃) ↔ 𝑚 = 𝑢)))
18469, 183dom2lem 8914 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)))
185 f1f1orn 6774 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1→(0...(𝑃 − 1)) → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
186184, 185syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
187 eqid 2731 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))
188187rnmpt 5896 . . . . . . . . . . . . . . . . 17 ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
1892, 188eqtr4i 2757 . . . . . . . . . . . . . . . 16 𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))
190 f1oeq3 6753 . . . . . . . . . . . . . . . 16 (𝐴 = ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)) → ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃))))
191189, 190ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴 ↔ (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto→ran (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)))
192186, 191sylibr 234 . . . . . . . . . . . . . 14 (𝜑 → (𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴)
193 ovex 7379 . . . . . . . . . . . . . . 15 (0...𝑁) ∈ V
194193f1oen 8895 . . . . . . . . . . . . . 14 ((𝑚 ∈ (0...𝑁) ↦ ((𝑚↑2) mod 𝑃)):(0...𝑁)–1-1-onto𝐴 → (0...𝑁) ≈ 𝐴)
195192, 194syl 17 . . . . . . . . . . . . 13 (𝜑 → (0...𝑁) ≈ 𝐴)
196195ensymd 8927 . . . . . . . . . . . 12 (𝜑𝐴 ≈ (0...𝑁))
197 ax-1cn 11064 . . . . . . . . . . . . . . 15 1 ∈ ℂ
198 pncan 11366 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
19957, 197, 198sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → ((𝑁 + 1) − 1) = 𝑁)
200199oveq2d 7362 . . . . . . . . . . . . 13 (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁))
20156nnnn0d 12442 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
202 peano2nn0 12421 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
203201, 202syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 + 1) ∈ ℕ0)
204203nn0zd 12494 . . . . . . . . . . . . . 14 (𝜑 → (𝑁 + 1) ∈ ℤ)
205 fz01en 13452 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℤ → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1)))
206204, 205syl 17 . . . . . . . . . . . . 13 (𝜑 → (0...((𝑁 + 1) − 1)) ≈ (1...(𝑁 + 1)))
207200, 206eqbrtrrd 5113 . . . . . . . . . . . 12 (𝜑 → (0...𝑁) ≈ (1...(𝑁 + 1)))
208 entr 8928 . . . . . . . . . . . 12 ((𝐴 ≈ (0...𝑁) ∧ (0...𝑁) ≈ (1...(𝑁 + 1))) → 𝐴 ≈ (1...(𝑁 + 1)))
209196, 207, 208syl2anc 584 . . . . . . . . . . 11 (𝜑𝐴 ≈ (1...(𝑁 + 1)))
2101, 15ssfid 9153 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
211 fzfid 13880 . . . . . . . . . . . 12 (𝜑 → (1...(𝑁 + 1)) ∈ Fin)
212 hashen 14254 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ (1...(𝑁 + 1)) ∈ Fin) → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1))))
213210, 211, 212syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) = (♯‘(1...(𝑁 + 1))) ↔ 𝐴 ≈ (1...(𝑁 + 1))))
214209, 213mpbird 257 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = (♯‘(1...(𝑁 + 1))))
215 hashfz1 14253 . . . . . . . . . . 11 ((𝑁 + 1) ∈ ℕ0 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
216203, 215syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
217214, 216eqtrd 2766 . . . . . . . . 9 (𝜑 → (♯‘𝐴) = (𝑁 + 1))
21827ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑣𝐴 → ((𝑃 − 1) − 𝑣) ∈ (0...(𝑃 − 1))))
21920adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → (𝑃 − 1) ∈ ℂ)
220 fzssuz 13465 . . . . . . . . . . . . . . . . . . . 20 (0...(𝑃 − 1)) ⊆ (ℤ‘0)
221 uzssz 12753 . . . . . . . . . . . . . . . . . . . . 21 (ℤ‘0) ⊆ ℤ
222 zsscn 12476 . . . . . . . . . . . . . . . . . . . . 21 ℤ ⊆ ℂ
223221, 222sstri 3939 . . . . . . . . . . . . . . . . . . . 20 (ℤ‘0) ⊆ ℂ
224220, 223sstri 3939 . . . . . . . . . . . . . . . . . . 19 (0...(𝑃 − 1)) ⊆ ℂ
22515, 224sstrdi 3942 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ⊆ ℂ)
226225sselda 3929 . . . . . . . . . . . . . . . . 17 ((𝜑𝑣𝐴) → 𝑣 ∈ ℂ)
227226adantrr 717 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → 𝑣 ∈ ℂ)
228225sselda 3929 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → 𝑘 ∈ ℂ)
229228adantrl 716 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → 𝑘 ∈ ℂ)
230219, 227, 229subcanad 11515 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑣𝐴𝑘𝐴)) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘))
231230ex 412 . . . . . . . . . . . . . 14 (𝜑 → ((𝑣𝐴𝑘𝐴) → (((𝑃 − 1) − 𝑣) = ((𝑃 − 1) − 𝑘) ↔ 𝑣 = 𝑘)))
232218, 231dom2lem 8914 . . . . . . . . . . . . 13 (𝜑 → (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1)))
233 f1eq1 6714 . . . . . . . . . . . . . 14 (𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)) → (𝐹:𝐴1-1→(0...(𝑃 − 1)) ↔ (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1))))
23428, 233ax-mp 5 . . . . . . . . . . . . 13 (𝐹:𝐴1-1→(0...(𝑃 − 1)) ↔ (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣)):𝐴1-1→(0...(𝑃 − 1)))
235232, 234sylibr 234 . . . . . . . . . . . 12 (𝜑𝐹:𝐴1-1→(0...(𝑃 − 1)))
236 f1f1orn 6774 . . . . . . . . . . . 12 (𝐹:𝐴1-1→(0...(𝑃 − 1)) → 𝐹:𝐴1-1-onto→ran 𝐹)
237235, 236syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐴1-1-onto→ran 𝐹)
238210, 237hasheqf1od 14260 . . . . . . . . . 10 (𝜑 → (♯‘𝐴) = (♯‘ran 𝐹))
239238, 217eqtr3d 2768 . . . . . . . . 9 (𝜑 → (♯‘ran 𝐹) = (𝑁 + 1))
240217, 239oveq12d 7364 . . . . . . . 8 (𝜑 → ((♯‘𝐴) + (♯‘ran 𝐹)) = ((𝑁 + 1) + (𝑁 + 1)))
24159, 68, 2403eqtr4d 2776 . . . . . . 7 (𝜑 → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹)))
242241adantr 480 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = ((♯‘𝐴) + (♯‘ran 𝐹)))
243210adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝐴 ∈ Fin)
2441, 30ssfid 9153 . . . . . . . 8 (𝜑 → ran 𝐹 ∈ Fin)
245244adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → ran 𝐹 ∈ Fin)
246 simpr 484 . . . . . . 7 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝐴 ∩ ran 𝐹) = ∅)
247 hashun 14289 . . . . . . 7 ((𝐴 ∈ Fin ∧ ran 𝐹 ∈ Fin ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹)))
248243, 245, 246, 247syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (♯‘(𝐴 ∪ ran 𝐹)) = ((♯‘𝐴) + (♯‘ran 𝐹)))
249242, 248eqtr4d 2769 . . . . 5 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → (𝑃 + 1) = (♯‘(𝐴 ∪ ran 𝐹)))
25055, 249breqtrd 5115 . . . 4 ((𝜑 ∧ (𝐴 ∩ ran 𝐹) = ∅) → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)))
251250ex 412 . . 3 (𝜑 → ((𝐴 ∩ ran 𝐹) = ∅ → 𝑃 < (♯‘(𝐴 ∪ ran 𝐹))))
252251necon3bd 2942 . 2 (𝜑 → (¬ 𝑃 < (♯‘(𝐴 ∪ ran 𝐹)) → (𝐴 ∩ ran 𝐹) ≠ ∅))
25353, 252mpd 15 1 (𝜑 → (𝐴 ∩ ran 𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wrex 3056  cun 3895  cin 3896  wss 3897  c0 4280   class class class wbr 5089  cmpt 5170  ran crn 5615  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cen 8866  cdom 8867  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407   mod cmo 13773  cexp 13968  chash 14237  abscabs 15141  cdvds 16163  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583
This theorem is referenced by:  4sqlem12  16868
  Copyright terms: Public domain W3C validator