MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta Structured version   Visualization version   GIF version

Theorem fta 27146
Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
fta ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑆

Proof of Theorem fta
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (coeff‘𝐹) = (coeff‘𝐹)
2 eqid 2736 . . . 4 (deg‘𝐹) = (deg‘𝐹)
3 simpl 482 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
4 simpr 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (deg‘𝐹) ∈ ℕ)
5 eqid 2736 . . . 4 if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1)) = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1))
6 eqid 2736 . . . 4 ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)) = ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2))
71, 2, 3, 4, 5, 6ftalem2 27140 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑟 ∈ ℝ+𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))
8 simpll 767 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → 𝐹 ∈ (Poly‘𝑆))
9 simplr 769 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → (deg‘𝐹) ∈ ℕ)
10 eqid 2736 . . . 4 {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟} = {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟}
11 eqid 2736 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
12 simprl 771 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → 𝑟 ∈ ℝ+)
13 simprr 773 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))
14 fveq2 6911 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥))
1514breq2d 5161 . . . . . . 7 (𝑦 = 𝑥 → (𝑟 < (abs‘𝑦) ↔ 𝑟 < (abs‘𝑥)))
16 2fveq3 6916 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑥)))
1716breq2d 5161 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘(𝐹‘0)) < (abs‘(𝐹𝑦)) ↔ (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
1815, 17imbi12d 344 . . . . . 6 (𝑦 = 𝑥 → ((𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))) ↔ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
1918cbvralvw 3236 . . . . 5 (∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))) ↔ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
2013, 19sylib 218 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
211, 2, 8, 9, 10, 11, 12, 20ftalem3 27141 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
227, 21rexlimddv 3160 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
23 simpll 767 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → 𝐹 ∈ (Poly‘𝑆))
24 simplr 769 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → (deg‘𝐹) ∈ ℕ)
25 simprl 771 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → 𝑧 ∈ ℂ)
26 simprr 773 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → (𝐹𝑧) ≠ 0)
271, 2, 23, 24, 25, 26ftalem7 27145 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
2827expr 456 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐹𝑧) ≠ 0 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
2928necon4ad 2958 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (𝐹𝑧) = 0))
3029reximdva 3167 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0))
3122, 30mpd 15 1 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1538  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3434  ifcif 4532   class class class wbr 5149  cfv 6566  (class class class)co 7435  cc 11157  0cc0 11159  1c1 11160   < clt 11299  cle 11300   / cdiv 11924  cn 12270  2c2 12325  +crp 13038  abscabs 15276  TopOpenctopn 17474  fldccnfld 21388  Polycply 26246  coeffccoe 26248  degcdgr 26249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237  ax-addf 11238
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-of 7701  df-om 7892  df-1st 8019  df-2nd 8020  df-supp 8191  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-er 8750  df-map 8873  df-pm 8874  df-ixp 8943  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-fsupp 9406  df-fi 9455  df-sup 9486  df-inf 9487  df-oi 9554  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-4 12335  df-5 12336  df-6 12337  df-7 12338  df-8 12339  df-9 12340  df-n0 12531  df-z 12618  df-dec 12738  df-uz 12883  df-q 12995  df-rp 13039  df-xneg 13158  df-xadd 13159  df-xmul 13160  df-ioo 13394  df-ioc 13395  df-ico 13396  df-icc 13397  df-fz 13551  df-fzo 13698  df-fl 13835  df-mod 13913  df-seq 14046  df-exp 14106  df-fac 14316  df-bc 14345  df-hash 14373  df-shft 15109  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-limsup 15510  df-clim 15527  df-rlim 15528  df-sum 15726  df-ef 16106  df-sin 16108  df-cos 16109  df-pi 16111  df-struct 17187  df-sets 17204  df-slot 17222  df-ndx 17234  df-base 17252  df-ress 17281  df-plusg 17317  df-mulr 17318  df-starv 17319  df-sca 17320  df-vsca 17321  df-ip 17322  df-tset 17323  df-ple 17324  df-ds 17326  df-unif 17327  df-hom 17328  df-cco 17329  df-rest 17475  df-topn 17476  df-0g 17494  df-gsum 17495  df-topgen 17496  df-pt 17497  df-prds 17500  df-xrs 17555  df-qtop 17560  df-imas 17561  df-xps 17563  df-mre 17637  df-mrc 17638  df-acs 17640  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-submnd 18816  df-mulg 19105  df-cntz 19354  df-cmn 19821  df-psmet 21380  df-xmet 21381  df-met 21382  df-bl 21383  df-mopn 21384  df-fbas 21385  df-fg 21386  df-cnfld 21389  df-top 22922  df-topon 22939  df-topsp 22961  df-bases 22975  df-cld 23049  df-ntr 23050  df-cls 23051  df-nei 23128  df-lp 23166  df-perf 23167  df-cn 23257  df-cnp 23258  df-haus 23345  df-cmp 23417  df-tx 23592  df-hmeo 23785  df-fil 23876  df-fm 23968  df-flim 23969  df-flf 23970  df-xms 24352  df-ms 24353  df-tms 24354  df-cncf 24926  df-0p 25727  df-limc 25924  df-dv 25925  df-ply 26250  df-idp 26251  df-coe 26252  df-dgr 26253  df-log 26621  df-cxp 26622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator