Step | Hyp | Ref
| Expression |
1 | | eqid 2733 |
. . . 4
β’
(coeffβπΉ) =
(coeffβπΉ) |
2 | | eqid 2733 |
. . . 4
β’
(degβπΉ) =
(degβπΉ) |
3 | | simpl 484 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) β β) β πΉ β (Polyβπ)) |
4 | | simpr 486 |
. . . 4
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) β β) β
(degβπΉ) β
β) |
5 | | eqid 2733 |
. . . 4
β’ if(if(1
β€ π , π , 1) β€ ((absβ(πΉβ0)) / ((absβ((coeffβπΉ)β(degβπΉ))) / 2)), ((absβ(πΉβ0)) /
((absβ((coeffβπΉ)β(degβπΉ))) / 2)), if(1 β€ π , π , 1)) = if(if(1 β€ π , π , 1) β€ ((absβ(πΉβ0)) / ((absβ((coeffβπΉ)β(degβπΉ))) / 2)), ((absβ(πΉβ0)) /
((absβ((coeffβπΉ)β(degβπΉ))) / 2)), if(1 β€ π , π , 1)) |
6 | | eqid 2733 |
. . . 4
β’
((absβ(πΉβ0)) / ((absβ((coeffβπΉ)β(degβπΉ))) / 2)) = ((absβ(πΉβ0)) /
((absβ((coeffβπΉ)β(degβπΉ))) / 2)) |
7 | 1, 2, 3, 4, 5, 6 | ftalem2 26578 |
. . 3
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) β β) β
βπ β
β+ βπ¦ β β (π < (absβπ¦) β (absβ(πΉβ0)) < (absβ(πΉβπ¦)))) |
8 | | simpll 766 |
. . . 4
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π β β+
β§ βπ¦ β
β (π <
(absβπ¦) β
(absβ(πΉβ0))
< (absβ(πΉβπ¦))))) β πΉ β (Polyβπ)) |
9 | | simplr 768 |
. . . 4
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π β β+
β§ βπ¦ β
β (π <
(absβπ¦) β
(absβ(πΉβ0))
< (absβ(πΉβπ¦))))) β (degβπΉ) β β) |
10 | | eqid 2733 |
. . . 4
β’ {π β β β£
(absβπ ) β€ π} = {π β β β£ (absβπ ) β€ π} |
11 | | eqid 2733 |
. . . 4
β’
(TopOpenββfld) =
(TopOpenββfld) |
12 | | simprl 770 |
. . . 4
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π β β+
β§ βπ¦ β
β (π <
(absβπ¦) β
(absβ(πΉβ0))
< (absβ(πΉβπ¦))))) β π β β+) |
13 | | simprr 772 |
. . . . 5
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π β β+
β§ βπ¦ β
β (π <
(absβπ¦) β
(absβ(πΉβ0))
< (absβ(πΉβπ¦))))) β βπ¦ β β (π < (absβπ¦) β (absβ(πΉβ0)) < (absβ(πΉβπ¦)))) |
14 | | fveq2 6892 |
. . . . . . . 8
β’ (π¦ = π₯ β (absβπ¦) = (absβπ₯)) |
15 | 14 | breq2d 5161 |
. . . . . . 7
β’ (π¦ = π₯ β (π < (absβπ¦) β π < (absβπ₯))) |
16 | | 2fveq3 6897 |
. . . . . . . 8
β’ (π¦ = π₯ β (absβ(πΉβπ¦)) = (absβ(πΉβπ₯))) |
17 | 16 | breq2d 5161 |
. . . . . . 7
β’ (π¦ = π₯ β ((absβ(πΉβ0)) < (absβ(πΉβπ¦)) β (absβ(πΉβ0)) < (absβ(πΉβπ₯)))) |
18 | 15, 17 | imbi12d 345 |
. . . . . 6
β’ (π¦ = π₯ β ((π < (absβπ¦) β (absβ(πΉβ0)) < (absβ(πΉβπ¦))) β (π < (absβπ₯) β (absβ(πΉβ0)) < (absβ(πΉβπ₯))))) |
19 | 18 | cbvralvw 3235 |
. . . . 5
β’
(βπ¦ β
β (π <
(absβπ¦) β
(absβ(πΉβ0))
< (absβ(πΉβπ¦))) β βπ₯ β β (π < (absβπ₯) β (absβ(πΉβ0)) < (absβ(πΉβπ₯)))) |
20 | 13, 19 | sylib 217 |
. . . 4
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π β β+
β§ βπ¦ β
β (π <
(absβπ¦) β
(absβ(πΉβ0))
< (absβ(πΉβπ¦))))) β βπ₯ β β (π < (absβπ₯) β (absβ(πΉβ0)) < (absβ(πΉβπ₯)))) |
21 | 1, 2, 8, 9, 10, 11, 12, 20 | ftalem3 26579 |
. . 3
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π β β+
β§ βπ¦ β
β (π <
(absβπ¦) β
(absβ(πΉβ0))
< (absβ(πΉβπ¦))))) β βπ§ β β βπ₯ β β (absβ(πΉβπ§)) β€ (absβ(πΉβπ₯))) |
22 | 7, 21 | rexlimddv 3162 |
. 2
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) β β) β
βπ§ β β
βπ₯ β β
(absβ(πΉβπ§)) β€ (absβ(πΉβπ₯))) |
23 | | simpll 766 |
. . . . . 6
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π§ β β β§ (πΉβπ§) β 0)) β πΉ β (Polyβπ)) |
24 | | simplr 768 |
. . . . . 6
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π§ β β β§ (πΉβπ§) β 0)) β (degβπΉ) β
β) |
25 | | simprl 770 |
. . . . . 6
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π§ β β β§ (πΉβπ§) β 0)) β π§ β β) |
26 | | simprr 772 |
. . . . . 6
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π§ β β β§ (πΉβπ§) β 0)) β (πΉβπ§) β 0) |
27 | 1, 2, 23, 24, 25, 26 | ftalem7 26583 |
. . . . 5
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ (π§ β β β§ (πΉβπ§) β 0)) β Β¬ βπ₯ β β
(absβ(πΉβπ§)) β€ (absβ(πΉβπ₯))) |
28 | 27 | expr 458 |
. . . 4
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ π§ β β) β ((πΉβπ§) β 0 β Β¬ βπ₯ β β
(absβ(πΉβπ§)) β€ (absβ(πΉβπ₯)))) |
29 | 28 | necon4ad 2960 |
. . 3
β’ (((πΉ β (Polyβπ) β§ (degβπΉ) β β) β§ π§ β β) β
(βπ₯ β β
(absβ(πΉβπ§)) β€ (absβ(πΉβπ₯)) β (πΉβπ§) = 0)) |
30 | 29 | reximdva 3169 |
. 2
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) β β) β
(βπ§ β β
βπ₯ β β
(absβ(πΉβπ§)) β€ (absβ(πΉβπ₯)) β βπ§ β β (πΉβπ§) = 0)) |
31 | 22, 30 | mpd 15 |
1
β’ ((πΉ β (Polyβπ) β§ (degβπΉ) β β) β
βπ§ β β
(πΉβπ§) = 0) |