| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fta | Structured version Visualization version GIF version | ||
| Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| fta | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹‘𝑧) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 2 | eqid 2729 | . . . 4 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆)) | |
| 4 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (deg‘𝐹) ∈ ℕ) | |
| 5 | eqid 2729 | . . . 4 ⊢ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1)) = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1)) | |
| 6 | eqid 2729 | . . . 4 ⊢ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)) = ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)) | |
| 7 | 1, 2, 3, 4, 5, 6 | ftalem2 27001 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑟 ∈ ℝ+ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦)))) |
| 8 | simpll 766 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → 𝐹 ∈ (Poly‘𝑆)) | |
| 9 | simplr 768 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → (deg‘𝐹) ∈ ℕ) | |
| 10 | eqid 2729 | . . . 4 ⊢ {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟} = {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟} | |
| 11 | eqid 2729 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 12 | simprl 770 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → 𝑟 ∈ ℝ+) | |
| 13 | simprr 772 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦)))) | |
| 14 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥)) | |
| 15 | 14 | breq2d 5107 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑟 < (abs‘𝑦) ↔ 𝑟 < (abs‘𝑥))) |
| 16 | 2fveq3 6831 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (abs‘(𝐹‘𝑦)) = (abs‘(𝐹‘𝑥))) | |
| 17 | 16 | breq2d 5107 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦)) ↔ (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) |
| 18 | 15, 17 | imbi12d 344 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ((𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))) ↔ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥))))) |
| 19 | 18 | cbvralvw 3207 | . . . . 5 ⊢ (∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))) ↔ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) |
| 20 | 13, 19 | sylib 218 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) |
| 21 | 1, 2, 8, 9, 10, 11, 12, 20 | ftalem3 27002 | . . 3 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥))) |
| 22 | 7, 21 | rexlimddv 3136 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥))) |
| 23 | simpll 766 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → 𝐹 ∈ (Poly‘𝑆)) | |
| 24 | simplr 768 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → (deg‘𝐹) ∈ ℕ) | |
| 25 | simprl 770 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → 𝑧 ∈ ℂ) | |
| 26 | simprr 772 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → (𝐹‘𝑧) ≠ 0) | |
| 27 | 1, 2, 23, 24, 25, 26 | ftalem7 27006 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥))) |
| 28 | 27 | expr 456 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) ≠ 0 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥)))) |
| 29 | 28 | necon4ad 2944 | . . 3 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥)) → (𝐹‘𝑧) = 0)) |
| 30 | 29 | reximdva 3142 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥)) → ∃𝑧 ∈ ℂ (𝐹‘𝑧) = 0)) |
| 31 | 22, 30 | mpd 15 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹‘𝑧) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3396 ifcif 4478 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 < clt 11168 ≤ cle 11169 / cdiv 11796 ℕcn 12147 2c2 12202 ℝ+crp 12912 abscabs 15160 TopOpenctopn 17344 ℂfldccnfld 21280 Polycply 26106 coeffccoe 26108 degcdgr 26109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13271 df-ioc 13272 df-ico 13273 df-icc 13274 df-fz 13430 df-fzo 13577 df-fl 13715 df-mod 13793 df-seq 13928 df-exp 13988 df-fac 14200 df-bc 14229 df-hash 14257 df-shft 14993 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-limsup 15397 df-clim 15414 df-rlim 15415 df-sum 15613 df-ef 15993 df-sin 15995 df-cos 15996 df-pi 15998 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-starv 17195 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-unif 17203 df-hom 17204 df-cco 17205 df-rest 17345 df-topn 17346 df-0g 17364 df-gsum 17365 df-topgen 17366 df-pt 17367 df-prds 17370 df-xrs 17425 df-qtop 17430 df-imas 17431 df-xps 17433 df-mre 17507 df-mrc 17508 df-acs 17510 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-mulg 18966 df-cntz 19215 df-cmn 19680 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-cnfld 21281 df-top 22798 df-topon 22815 df-topsp 22837 df-bases 22850 df-cld 22923 df-ntr 22924 df-cls 22925 df-nei 23002 df-lp 23040 df-perf 23041 df-cn 23131 df-cnp 23132 df-haus 23219 df-cmp 23291 df-tx 23466 df-hmeo 23659 df-fil 23750 df-fm 23842 df-flim 23843 df-flf 23844 df-xms 24225 df-ms 24226 df-tms 24227 df-cncf 24788 df-0p 25588 df-limc 25784 df-dv 25785 df-ply 26110 df-idp 26111 df-coe 26112 df-dgr 26113 df-log 26482 df-cxp 26483 |
| This theorem is referenced by: cjnpoly 46893 |
| Copyright terms: Public domain | W3C validator |