| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fta | Structured version Visualization version GIF version | ||
| Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| fta | ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹‘𝑧) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 2 | eqid 2730 | . . . 4 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 3 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆)) | |
| 4 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (deg‘𝐹) ∈ ℕ) | |
| 5 | eqid 2730 | . . . 4 ⊢ if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1)) = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1)) | |
| 6 | eqid 2730 | . . . 4 ⊢ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)) = ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)) | |
| 7 | 1, 2, 3, 4, 5, 6 | ftalem2 26991 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑟 ∈ ℝ+ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦)))) |
| 8 | simpll 766 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → 𝐹 ∈ (Poly‘𝑆)) | |
| 9 | simplr 768 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → (deg‘𝐹) ∈ ℕ) | |
| 10 | eqid 2730 | . . . 4 ⊢ {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟} = {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟} | |
| 11 | eqid 2730 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 12 | simprl 770 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → 𝑟 ∈ ℝ+) | |
| 13 | simprr 772 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦)))) | |
| 14 | fveq2 6865 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥)) | |
| 15 | 14 | breq2d 5127 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑟 < (abs‘𝑦) ↔ 𝑟 < (abs‘𝑥))) |
| 16 | 2fveq3 6870 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (abs‘(𝐹‘𝑦)) = (abs‘(𝐹‘𝑥))) | |
| 17 | 16 | breq2d 5127 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦)) ↔ (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) |
| 18 | 15, 17 | imbi12d 344 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ((𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))) ↔ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥))))) |
| 19 | 18 | cbvralvw 3217 | . . . . 5 ⊢ (∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))) ↔ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) |
| 20 | 13, 19 | sylib 218 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑥)))) |
| 21 | 1, 2, 8, 9, 10, 11, 12, 20 | ftalem3 26992 | . . 3 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹‘𝑦))))) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥))) |
| 22 | 7, 21 | rexlimddv 3142 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥))) |
| 23 | simpll 766 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → 𝐹 ∈ (Poly‘𝑆)) | |
| 24 | simplr 768 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → (deg‘𝐹) ∈ ℕ) | |
| 25 | simprl 770 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → 𝑧 ∈ ℂ) | |
| 26 | simprr 772 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → (𝐹‘𝑧) ≠ 0) | |
| 27 | 1, 2, 23, 24, 25, 26 | ftalem7 26996 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹‘𝑧) ≠ 0)) → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥))) |
| 28 | 27 | expr 456 | . . . 4 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) ≠ 0 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥)))) |
| 29 | 28 | necon4ad 2946 | . . 3 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥)) → (𝐹‘𝑧) = 0)) |
| 30 | 29 | reximdva 3148 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹‘𝑧)) ≤ (abs‘(𝐹‘𝑥)) → ∃𝑧 ∈ ℂ (𝐹‘𝑧) = 0)) |
| 31 | 22, 30 | mpd 15 | 1 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹‘𝑧) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∀wral 3046 ∃wrex 3055 {crab 3411 ifcif 4496 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 0cc0 11086 1c1 11087 < clt 11226 ≤ cle 11227 / cdiv 11851 ℕcn 12197 2c2 12252 ℝ+crp 12965 abscabs 15210 TopOpenctopn 17390 ℂfldccnfld 21270 Polycply 26096 coeffccoe 26098 degcdgr 26099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-fac 14249 df-bc 14278 df-hash 14306 df-shft 15043 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-cmp 23280 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-0p 25578 df-limc 25774 df-dv 25775 df-ply 26100 df-idp 26101 df-coe 26102 df-dgr 26103 df-log 26472 df-cxp 26473 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |