MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta Structured version   Visualization version   GIF version

Theorem fta 27012
Description: The Fundamental Theorem of Algebra. Any polynomial with positive degree (i.e. non-constant) has a root. This is Metamath 100 proof #2. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
fta ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑆

Proof of Theorem fta
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (coeff‘𝐹) = (coeff‘𝐹)
2 eqid 2731 . . . 4 (deg‘𝐹) = (deg‘𝐹)
3 simpl 482 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
4 simpr 484 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (deg‘𝐹) ∈ ℕ)
5 eqid 2731 . . . 4 if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1)) = if(if(1 ≤ 𝑠, 𝑠, 1) ≤ ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)), if(1 ≤ 𝑠, 𝑠, 1))
6 eqid 2731 . . . 4 ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2)) = ((abs‘(𝐹‘0)) / ((abs‘((coeff‘𝐹)‘(deg‘𝐹))) / 2))
71, 2, 3, 4, 5, 6ftalem2 27006 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑟 ∈ ℝ+𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))
8 simpll 766 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → 𝐹 ∈ (Poly‘𝑆))
9 simplr 768 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → (deg‘𝐹) ∈ ℕ)
10 eqid 2731 . . . 4 {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟} = {𝑠 ∈ ℂ ∣ (abs‘𝑠) ≤ 𝑟}
11 eqid 2731 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
12 simprl 770 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → 𝑟 ∈ ℝ+)
13 simprr 772 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))
14 fveq2 6817 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘𝑦) = (abs‘𝑥))
1514breq2d 5098 . . . . . . 7 (𝑦 = 𝑥 → (𝑟 < (abs‘𝑦) ↔ 𝑟 < (abs‘𝑥)))
16 2fveq3 6822 . . . . . . . 8 (𝑦 = 𝑥 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑥)))
1716breq2d 5098 . . . . . . 7 (𝑦 = 𝑥 → ((abs‘(𝐹‘0)) < (abs‘(𝐹𝑦)) ↔ (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
1815, 17imbi12d 344 . . . . . 6 (𝑦 = 𝑥 → ((𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))) ↔ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥)))))
1918cbvralvw 3210 . . . . 5 (∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))) ↔ ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
2013, 19sylib 218 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∀𝑥 ∈ ℂ (𝑟 < (abs‘𝑥) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑥))))
211, 2, 8, 9, 10, 11, 12, 20ftalem3 27007 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑟 ∈ ℝ+ ∧ ∀𝑦 ∈ ℂ (𝑟 < (abs‘𝑦) → (abs‘(𝐹‘0)) < (abs‘(𝐹𝑦))))) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
227, 21rexlimddv 3139 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
23 simpll 766 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → 𝐹 ∈ (Poly‘𝑆))
24 simplr 768 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → (deg‘𝐹) ∈ ℕ)
25 simprl 770 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → 𝑧 ∈ ℂ)
26 simprr 772 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → (𝐹𝑧) ≠ 0)
271, 2, 23, 24, 25, 26ftalem7 27011 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ (𝑧 ∈ ℂ ∧ (𝐹𝑧) ≠ 0)) → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)))
2827expr 456 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐹𝑧) ≠ 0 → ¬ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥))))
2928necon4ad 2947 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → (𝐹𝑧) = 0))
3029reximdva 3145 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → (∃𝑧 ∈ ℂ ∀𝑥 ∈ ℂ (abs‘(𝐹𝑧)) ≤ (abs‘(𝐹𝑥)) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0))
3122, 30mpd 15 1 ((𝐹 ∈ (Poly‘𝑆) ∧ (deg‘𝐹) ∈ ℕ) → ∃𝑧 ∈ ℂ (𝐹𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  ifcif 4470   class class class wbr 5086  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002   < clt 11141  cle 11142   / cdiv 11769  cn 12120  2c2 12175  +crp 12885  abscabs 15136  TopOpenctopn 17320  fldccnfld 21286  Polycply 26111  coeffccoe 26113  degcdgr 26114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19224  df-cmn 19689  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-cmp 23297  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-0p 25593  df-limc 25789  df-dv 25790  df-ply 26115  df-idp 26116  df-coe 26117  df-dgr 26118  df-log 26487  df-cxp 26488
This theorem is referenced by:  cjnpoly  46920
  Copyright terms: Public domain W3C validator