Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1lt0 | Structured version Visualization version GIF version |
Description: A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
Ref | Expression |
---|---|
deg1z.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1z.z | ⊢ 0 = (0g‘𝑃) |
deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
deg1lt0 | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) < 0 ↔ 𝐹 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1z.d | . . . . . 6 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1z.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | deg1z.z | . . . . . 6 ⊢ 0 = (0g‘𝑃) | |
4 | deg1nn0cl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
5 | 1, 2, 3, 4 | deg1nn0cl 25249 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
6 | nn0nlt0 12257 | . . . . 5 ⊢ ((𝐷‘𝐹) ∈ ℕ0 → ¬ (𝐷‘𝐹) < 0) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → ¬ (𝐷‘𝐹) < 0) |
8 | 7 | 3expia 1120 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 → ¬ (𝐷‘𝐹) < 0)) |
9 | 8 | necon4ad 2964 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) < 0 → 𝐹 = 0 )) |
10 | 1, 2, 3 | deg1z 25248 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝐷‘ 0 ) = -∞) |
11 | mnflt0 12858 | . . . . 5 ⊢ -∞ < 0 | |
12 | 10, 11 | eqbrtrdi 5118 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐷‘ 0 ) < 0) |
13 | 12 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐷‘ 0 ) < 0) |
14 | fveq2 6769 | . . . 4 ⊢ (𝐹 = 0 → (𝐷‘𝐹) = (𝐷‘ 0 )) | |
15 | 14 | breq1d 5089 | . . 3 ⊢ (𝐹 = 0 → ((𝐷‘𝐹) < 0 ↔ (𝐷‘ 0 ) < 0)) |
16 | 13, 15 | syl5ibrcom 246 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 = 0 → (𝐷‘𝐹) < 0)) |
17 | 9, 16 | impbid 211 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → ((𝐷‘𝐹) < 0 ↔ 𝐹 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 ‘cfv 6431 0cc0 10870 -∞cmnf 11006 < clt 11008 ℕ0cn0 12231 Basecbs 16908 0gc0g 17146 Ringcrg 19779 Poly1cpl1 21344 deg1 cdg1 25212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 ax-addf 10949 ax-mulf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-supp 7967 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-map 8598 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-fsupp 9105 df-sup 9177 df-oi 9245 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-7 12039 df-8 12040 df-9 12041 df-n0 12232 df-z 12318 df-dec 12435 df-uz 12580 df-fz 13237 df-fzo 13380 df-seq 13718 df-hash 14041 df-struct 16844 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-ress 16938 df-plusg 16971 df-mulr 16972 df-starv 16973 df-sca 16974 df-vsca 16975 df-tset 16977 df-ple 16978 df-ds 16980 df-unif 16981 df-0g 17148 df-gsum 17149 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-submnd 18427 df-grp 18576 df-minusg 18577 df-subg 18748 df-cntz 18919 df-cmn 19384 df-abl 19385 df-mgp 19717 df-ur 19734 df-ring 19781 df-cring 19782 df-cnfld 20594 df-psr 21108 df-mpl 21110 df-opsr 21112 df-psr1 21347 df-ply1 21349 df-mdeg 25213 df-deg1 25214 |
This theorem is referenced by: hbtlem5 40948 |
Copyright terms: Public domain | W3C validator |