MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1finf1o Structured version   Visualization version   GIF version

Theorem f1finf1o 9282
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) Avoid ax-pow 5340. (Revised by BTernaryTau, 4-Jan-2025.)
Assertion
Ref Expression
f1finf1o ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 484 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 f1f 6779 . . . . . . 7 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
32adantl 481 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴𝐵)
43ffnd 6712 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
5 simpll 766 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
63frnd 6719 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
7 df-pss 3951 . . . . . . . . . 10 (ran 𝐹𝐵 ↔ (ran 𝐹𝐵 ∧ ran 𝐹𝐵))
87baib 535 . . . . . . . . 9 (ran 𝐹𝐵 → (ran 𝐹𝐵 ↔ ran 𝐹𝐵))
96, 8syl 17 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 ↔ ran 𝐹𝐵))
10 php3 9228 . . . . . . . . . . . 12 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹𝐵)
1110ex 412 . . . . . . . . . . 11 (𝐵 ∈ Fin → (ran 𝐹𝐵 → ran 𝐹𝐵))
1211ad2antlr 727 . . . . . . . . . 10 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ran 𝐹𝐵))
13 enfii 9205 . . . . . . . . . . . 12 ((𝐵 ∈ Fin ∧ 𝐴𝐵) → 𝐴 ∈ Fin)
1413ancoms 458 . . . . . . . . . . 11 ((𝐴𝐵𝐵 ∈ Fin) → 𝐴 ∈ Fin)
15 f1f1orn 6834 . . . . . . . . . . . 12 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
16 f1oenfi 9198 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto→ran 𝐹) → 𝐴 ≈ ran 𝐹)
1714, 15, 16syl2an 596 . . . . . . . . . . 11 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ≈ ran 𝐹)
18 endom 8998 . . . . . . . . . . . . 13 (𝐴 ≈ ran 𝐹𝐴 ≼ ran 𝐹)
19 domsdomtrfi 9221 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝐴 ≼ ran 𝐹 ∧ ran 𝐹𝐵) → 𝐴𝐵)
2018, 19syl3an2 1164 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐴 ≈ ran 𝐹 ∧ ran 𝐹𝐵) → 𝐴𝐵)
21203expia 1121 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝐴 ≈ ran 𝐹) → (ran 𝐹𝐵𝐴𝐵))
2214, 17, 21syl2an2r 685 . . . . . . . . . 10 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵𝐴𝐵))
2312, 22syld 47 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵𝐴𝐵))
24 sdomnen 9000 . . . . . . . . 9 (𝐴𝐵 → ¬ 𝐴𝐵)
2523, 24syl6 35 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ¬ 𝐴𝐵))
269, 25sylbird 260 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ¬ 𝐴𝐵))
2726necon4ad 2952 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐴𝐵 → ran 𝐹 = 𝐵))
285, 27mpd 15 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 = 𝐵)
29 df-fo 6542 . . . . 5 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
304, 28, 29sylanbrc 583 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴onto𝐵)
31 df-f1o 6543 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
321, 30, 31sylanbrc 583 . . 3 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto𝐵)
3332ex 412 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
34 f1of1 6822 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
3533, 34impbid1 225 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wss 3931  wpss 3932   class class class wbr 5124  ran crn 5660   Fn wfn 6531  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  cen 8961  cdom 8962  csdm 8963  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968
This theorem is referenced by:  hashfac  14481  crth  16802  eulerthlem2  16806  fidomndrnglem  20737  mdetunilem8  22562  basellem4  27051  lgsqrlem4  27317  lgseisenlem2  27344  aks5lem7  42218
  Copyright terms: Public domain W3C validator