Proof of Theorem f1finf1o
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1→𝐵) |
| 2 | | f1f 6779 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| 3 | 2 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴⟶𝐵) |
| 4 | 3 | ffnd 6712 |
. . . . 5
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹 Fn 𝐴) |
| 5 | | simpll 766 |
. . . . . 6
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≈ 𝐵) |
| 6 | 3 | frnd 6719 |
. . . . . . . . 9
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 ⊆ 𝐵) |
| 7 | | df-pss 3951 |
. . . . . . . . . 10
⊢ (ran
𝐹 ⊊ 𝐵 ↔ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ≠ 𝐵)) |
| 8 | 7 | baib 535 |
. . . . . . . . 9
⊢ (ran
𝐹 ⊆ 𝐵 → (ran 𝐹 ⊊ 𝐵 ↔ ran 𝐹 ≠ 𝐵)) |
| 9 | 6, 8 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (ran 𝐹 ⊊ 𝐵 ↔ ran 𝐹 ≠ 𝐵)) |
| 10 | | php3 9228 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ Fin ∧ ran 𝐹 ⊊ 𝐵) → ran 𝐹 ≺ 𝐵) |
| 11 | 10 | ex 412 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Fin → (ran 𝐹 ⊊ 𝐵 → ran 𝐹 ≺ 𝐵)) |
| 12 | 11 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (ran 𝐹 ⊊ 𝐵 → ran 𝐹 ≺ 𝐵)) |
| 13 | | enfii 9205 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) |
| 14 | 13 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin) |
| 15 | | f1f1orn 6834 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
| 16 | | f1oenfi 9198 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→ran
𝐹) → 𝐴 ≈ ran 𝐹) |
| 17 | 14, 15, 16 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≈ ran 𝐹) |
| 18 | | endom 8998 |
. . . . . . . . . . . . 13
⊢ (𝐴 ≈ ran 𝐹 → 𝐴 ≼ ran 𝐹) |
| 19 | | domsdomtrfi 9221 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ ran 𝐹 ∧ ran 𝐹 ≺ 𝐵) → 𝐴 ≺ 𝐵) |
| 20 | 18, 19 | syl3an2 1164 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ ran 𝐹 ∧ ran 𝐹 ≺ 𝐵) → 𝐴 ≺ 𝐵) |
| 21 | 20 | 3expia 1121 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ ran 𝐹) → (ran 𝐹 ≺ 𝐵 → 𝐴 ≺ 𝐵)) |
| 22 | 14, 17, 21 | syl2an2r 685 |
. . . . . . . . . 10
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (ran 𝐹 ≺ 𝐵 → 𝐴 ≺ 𝐵)) |
| 23 | 12, 22 | syld 47 |
. . . . . . . . 9
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (ran 𝐹 ⊊ 𝐵 → 𝐴 ≺ 𝐵)) |
| 24 | | sdomnen 9000 |
. . . . . . . . 9
⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| 25 | 23, 24 | syl6 35 |
. . . . . . . 8
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (ran 𝐹 ⊊ 𝐵 → ¬ 𝐴 ≈ 𝐵)) |
| 26 | 9, 25 | sylbird 260 |
. . . . . . 7
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (ran 𝐹 ≠ 𝐵 → ¬ 𝐴 ≈ 𝐵)) |
| 27 | 26 | necon4ad 2952 |
. . . . . 6
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → (𝐴 ≈ 𝐵 → ran 𝐹 = 𝐵)) |
| 28 | 5, 27 | mpd 15 |
. . . . 5
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → ran 𝐹 = 𝐵) |
| 29 | | df-fo 6542 |
. . . . 5
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
| 30 | 4, 28, 29 | sylanbrc 583 |
. . . 4
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–onto→𝐵) |
| 31 | | df-f1o 6543 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
| 32 | 1, 30, 31 | sylanbrc 583 |
. . 3
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) |
| 33 | 32 | ex 412 |
. 2
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→𝐵)) |
| 34 | | f1of1 6822 |
. 2
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) |
| 35 | 33, 34 | impbid1 225 |
1
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) |