MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1finf1o Structured version   Visualization version   GIF version

Theorem f1finf1o 9273
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) Avoid ax-pow 5362. (Revised by BTernaryTau, 4-Jan-2025.)
Assertion
Ref Expression
f1finf1o ((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) β†’ (𝐹:𝐴–1-1→𝐡 ↔ 𝐹:𝐴–1-1-onto→𝐡))

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 483 . . . 4 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐹:𝐴–1-1→𝐡)
2 f1f 6786 . . . . . . 7 (𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴⟢𝐡)
32adantl 480 . . . . . 6 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐹:𝐴⟢𝐡)
43ffnd 6717 . . . . 5 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐹 Fn 𝐴)
5 simpll 763 . . . . . 6 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐴 β‰ˆ 𝐡)
63frnd 6724 . . . . . . . . 9 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ ran 𝐹 βŠ† 𝐡)
7 df-pss 3966 . . . . . . . . . 10 (ran 𝐹 ⊊ 𝐡 ↔ (ran 𝐹 βŠ† 𝐡 ∧ ran 𝐹 β‰  𝐡))
87baib 534 . . . . . . . . 9 (ran 𝐹 βŠ† 𝐡 β†’ (ran 𝐹 ⊊ 𝐡 ↔ ran 𝐹 β‰  𝐡))
96, 8syl 17 . . . . . . . 8 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ (ran 𝐹 ⊊ 𝐡 ↔ ran 𝐹 β‰  𝐡))
10 php3 9214 . . . . . . . . . . . 12 ((𝐡 ∈ Fin ∧ ran 𝐹 ⊊ 𝐡) β†’ ran 𝐹 β‰Ί 𝐡)
1110ex 411 . . . . . . . . . . 11 (𝐡 ∈ Fin β†’ (ran 𝐹 ⊊ 𝐡 β†’ ran 𝐹 β‰Ί 𝐡))
1211ad2antlr 723 . . . . . . . . . 10 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ (ran 𝐹 ⊊ 𝐡 β†’ ran 𝐹 β‰Ί 𝐡))
13 enfii 9191 . . . . . . . . . . . 12 ((𝐡 ∈ Fin ∧ 𝐴 β‰ˆ 𝐡) β†’ 𝐴 ∈ Fin)
1413ancoms 457 . . . . . . . . . . 11 ((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) β†’ 𝐴 ∈ Fin)
15 f1f1orn 6843 . . . . . . . . . . . 12 (𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴–1-1-ontoβ†’ran 𝐹)
16 f1oenfi 9184 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-ontoβ†’ran 𝐹) β†’ 𝐴 β‰ˆ ran 𝐹)
1714, 15, 16syl2an 594 . . . . . . . . . . 11 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐴 β‰ˆ ran 𝐹)
18 endom 8977 . . . . . . . . . . . . 13 (𝐴 β‰ˆ ran 𝐹 β†’ 𝐴 β‰Ό ran 𝐹)
19 domsdomtrfi 9207 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝐴 β‰Ό ran 𝐹 ∧ ran 𝐹 β‰Ί 𝐡) β†’ 𝐴 β‰Ί 𝐡)
2018, 19syl3an2 1162 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝐴 β‰ˆ ran 𝐹 ∧ ran 𝐹 β‰Ί 𝐡) β†’ 𝐴 β‰Ί 𝐡)
21203expia 1119 . . . . . . . . . . 11 ((𝐴 ∈ Fin ∧ 𝐴 β‰ˆ ran 𝐹) β†’ (ran 𝐹 β‰Ί 𝐡 β†’ 𝐴 β‰Ί 𝐡))
2214, 17, 21syl2an2r 681 . . . . . . . . . 10 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ (ran 𝐹 β‰Ί 𝐡 β†’ 𝐴 β‰Ί 𝐡))
2312, 22syld 47 . . . . . . . . 9 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ (ran 𝐹 ⊊ 𝐡 β†’ 𝐴 β‰Ί 𝐡))
24 sdomnen 8979 . . . . . . . . 9 (𝐴 β‰Ί 𝐡 β†’ Β¬ 𝐴 β‰ˆ 𝐡)
2523, 24syl6 35 . . . . . . . 8 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ (ran 𝐹 ⊊ 𝐡 β†’ Β¬ 𝐴 β‰ˆ 𝐡))
269, 25sylbird 259 . . . . . . 7 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ (ran 𝐹 β‰  𝐡 β†’ Β¬ 𝐴 β‰ˆ 𝐡))
2726necon4ad 2957 . . . . . 6 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ (𝐴 β‰ˆ 𝐡 β†’ ran 𝐹 = 𝐡))
285, 27mpd 15 . . . . 5 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ ran 𝐹 = 𝐡)
29 df-fo 6548 . . . . 5 (𝐹:𝐴–onto→𝐡 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐡))
304, 28, 29sylanbrc 581 . . . 4 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐹:𝐴–onto→𝐡)
31 df-f1o 6549 . . . 4 (𝐹:𝐴–1-1-onto→𝐡 ↔ (𝐹:𝐴–1-1→𝐡 ∧ 𝐹:𝐴–onto→𝐡))
321, 30, 31sylanbrc 581 . . 3 (((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) ∧ 𝐹:𝐴–1-1→𝐡) β†’ 𝐹:𝐴–1-1-onto→𝐡)
3332ex 411 . 2 ((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) β†’ (𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴–1-1-onto→𝐡))
34 f1of1 6831 . 2 (𝐹:𝐴–1-1-onto→𝐡 β†’ 𝐹:𝐴–1-1→𝐡)
3533, 34impbid1 224 1 ((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Fin) β†’ (𝐹:𝐴–1-1→𝐡 ↔ 𝐹:𝐴–1-1-onto→𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938   βŠ† wss 3947   ⊊ wpss 3948   class class class wbr 5147  ran crn 5676   Fn wfn 6537  βŸΆwf 6538  β€“1-1β†’wf1 6539  β€“ontoβ†’wfo 6540  β€“1-1-ontoβ†’wf1o 6541   β‰ˆ cen 8938   β‰Ό cdom 8939   β‰Ί csdm 8940  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945
This theorem is referenced by:  hashfac  14423  crth  16715  eulerthlem2  16719  fidomndrnglem  21125  mdetunilem8  22341  basellem4  26824  lgsqrlem4  27088  lgseisenlem2  27115
  Copyright terms: Public domain W3C validator