MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1finf1o Structured version   Visualization version   GIF version

Theorem f1finf1o 8737
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.)
Assertion
Ref Expression
f1finf1o ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 485 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 f1f 6571 . . . . . . 7 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
32adantl 482 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴𝐵)
43ffnd 6511 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
5 simpll 763 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
63frnd 6517 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
7 df-pss 3957 . . . . . . . . . 10 (ran 𝐹𝐵 ↔ (ran 𝐹𝐵 ∧ ran 𝐹𝐵))
87baib 536 . . . . . . . . 9 (ran 𝐹𝐵 → (ran 𝐹𝐵 ↔ ran 𝐹𝐵))
96, 8syl 17 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 ↔ ran 𝐹𝐵))
10 simplr 765 . . . . . . . . . . . . 13 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐵 ∈ Fin)
11 relen 8506 . . . . . . . . . . . . . . 15 Rel ≈
1211brrelex1i 5606 . . . . . . . . . . . . . 14 (𝐴𝐵𝐴 ∈ V)
135, 12syl 17 . . . . . . . . . . . . 13 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ V)
1410, 13elmapd 8413 . . . . . . . . . . . 12 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
153, 14mpbird 258 . . . . . . . . . . 11 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ (𝐵m 𝐴))
16 f1f1orn 6622 . . . . . . . . . . . 12 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
1716adantl 482 . . . . . . . . . . 11 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
18 f1oen3g 8517 . . . . . . . . . . 11 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐹:𝐴1-1-onto→ran 𝐹) → 𝐴 ≈ ran 𝐹)
1915, 17, 18syl2anc 584 . . . . . . . . . 10 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ≈ ran 𝐹)
20 php3 8695 . . . . . . . . . . . 12 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹𝐵)
2120ex 413 . . . . . . . . . . 11 (𝐵 ∈ Fin → (ran 𝐹𝐵 → ran 𝐹𝐵))
2210, 21syl 17 . . . . . . . . . 10 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ran 𝐹𝐵))
23 ensdomtr 8645 . . . . . . . . . 10 ((𝐴 ≈ ran 𝐹 ∧ ran 𝐹𝐵) → 𝐴𝐵)
2419, 22, 23syl6an 680 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵𝐴𝐵))
25 sdomnen 8530 . . . . . . . . 9 (𝐴𝐵 → ¬ 𝐴𝐵)
2624, 25syl6 35 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ¬ 𝐴𝐵))
279, 26sylbird 261 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ¬ 𝐴𝐵))
2827necon4ad 3039 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐴𝐵 → ran 𝐹 = 𝐵))
295, 28mpd 15 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 = 𝐵)
30 df-fo 6357 . . . . 5 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
314, 29, 30sylanbrc 583 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴onto𝐵)
32 df-f1o 6358 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
331, 31, 32sylanbrc 583 . . 3 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto𝐵)
3433ex 413 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
35 f1of1 6610 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
3634, 35impbid1 226 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wne 3020  Vcvv 3499  wss 3939  wpss 3940   class class class wbr 5062  ran crn 5554   Fn wfn 6346  wf 6347  1-1wf1 6348  ontowfo 6349  1-1-ontowf1o 6350  (class class class)co 7151  m cmap 8399  cen 8498  csdm 8500  Fincfn 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505
This theorem is referenced by:  hashfac  13809  crth  16107  eulerthlem2  16111  fidomndrnglem  20000  mdetunilem8  21144  basellem4  25575  lgsqrlem4  25839  lgseisenlem2  25866
  Copyright terms: Public domain W3C validator