MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1finf1o Structured version   Visualization version   GIF version

Theorem f1finf1o 8764
Description: Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.)
Assertion
Ref Expression
f1finf1o ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))

Proof of Theorem f1finf1o
StepHypRef Expression
1 simpr 489 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 f1f 6558 . . . . . . 7 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
32adantl 486 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴𝐵)
43ffnd 6497 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
5 simpll 767 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴𝐵)
63frnd 6503 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹𝐵)
7 df-pss 3878 . . . . . . . . . 10 (ran 𝐹𝐵 ↔ (ran 𝐹𝐵 ∧ ran 𝐹𝐵))
87baib 540 . . . . . . . . 9 (ran 𝐹𝐵 → (ran 𝐹𝐵 ↔ ran 𝐹𝐵))
96, 8syl 17 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 ↔ ran 𝐹𝐵))
10 simplr 769 . . . . . . . . . . . . 13 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐵 ∈ Fin)
11 relen 8530 . . . . . . . . . . . . . . 15 Rel ≈
1211brrelex1i 5575 . . . . . . . . . . . . . 14 (𝐴𝐵𝐴 ∈ V)
135, 12syl 17 . . . . . . . . . . . . 13 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ∈ V)
1410, 13elmapd 8428 . . . . . . . . . . . 12 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
153, 14mpbird 260 . . . . . . . . . . 11 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹 ∈ (𝐵m 𝐴))
16 f1f1orn 6611 . . . . . . . . . . . 12 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
1716adantl 486 . . . . . . . . . . 11 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
18 f1oen3g 8541 . . . . . . . . . . 11 ((𝐹 ∈ (𝐵m 𝐴) ∧ 𝐹:𝐴1-1-onto→ran 𝐹) → 𝐴 ≈ ran 𝐹)
1915, 17, 18syl2anc 588 . . . . . . . . . 10 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐴 ≈ ran 𝐹)
20 php3 8722 . . . . . . . . . . . 12 ((𝐵 ∈ Fin ∧ ran 𝐹𝐵) → ran 𝐹𝐵)
2120ex 417 . . . . . . . . . . 11 (𝐵 ∈ Fin → (ran 𝐹𝐵 → ran 𝐹𝐵))
2210, 21syl 17 . . . . . . . . . 10 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ran 𝐹𝐵))
23 ensdomtr 8672 . . . . . . . . . 10 ((𝐴 ≈ ran 𝐹 ∧ ran 𝐹𝐵) → 𝐴𝐵)
2419, 22, 23syl6an 684 . . . . . . . . 9 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵𝐴𝐵))
25 sdomnen 8554 . . . . . . . . 9 (𝐴𝐵 → ¬ 𝐴𝐵)
2624, 25syl6 35 . . . . . . . 8 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ¬ 𝐴𝐵))
279, 26sylbird 263 . . . . . . 7 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (ran 𝐹𝐵 → ¬ 𝐴𝐵))
2827necon4ad 2971 . . . . . 6 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → (𝐴𝐵 → ran 𝐹 = 𝐵))
295, 28mpd 15 . . . . 5 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → ran 𝐹 = 𝐵)
30 df-fo 6339 . . . . 5 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
314, 29, 30sylanbrc 587 . . . 4 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴onto𝐵)
32 df-f1o 6340 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
331, 31, 32sylanbrc 587 . . 3 (((𝐴𝐵𝐵 ∈ Fin) ∧ 𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1-onto𝐵)
3433ex 417 . 2 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
35 f1of1 6599 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
3634, 35impbid1 228 1 ((𝐴𝐵𝐵 ∈ Fin) → (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wne 2952  Vcvv 3410  wss 3859  wpss 3860   class class class wbr 5030  ran crn 5523   Fn wfn 6328  wf 6329  1-1wf1 6330  ontowfo 6331  1-1-ontowf1o 6332  (class class class)co 7148  m cmap 8414  cen 8522  csdm 8524  Fincfn 8525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-br 5031  df-opab 5093  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-er 8297  df-map 8416  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529
This theorem is referenced by:  hashfac  13858  crth  16160  eulerthlem2  16164  fidomndrnglem  20137  mdetunilem8  21309  basellem4  25758  lgsqrlem4  26022  lgseisenlem2  26049
  Copyright terms: Public domain W3C validator