MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo0dvdseq Structured version   Visualization version   GIF version

Theorem fzo0dvdseq 16234
Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzo0dvdseq (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))

Proof of Theorem fzo0dvdseq
StepHypRef Expression
1 elfzolt2 13568 . . . . . . 7 (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴)
2 elfzoelz 13559 . . . . . . . . 9 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ)
32zred 12577 . . . . . . . 8 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℝ)
4 elfzoel2 13558 . . . . . . . . 9 (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ)
54zred 12577 . . . . . . . 8 (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℝ)
63, 5ltnled 11260 . . . . . . 7 (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
71, 6mpbid 232 . . . . . 6 (𝐵 ∈ (0..^𝐴) → ¬ 𝐴𝐵)
87adantr 480 . . . . 5 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → ¬ 𝐴𝐵)
9 elfzonn0 13607 . . . . . . . . 9 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0)
109adantr 480 . . . . . . . 8 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0)
11 simpr 484 . . . . . . . 8 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
12 eldifsn 4735 . . . . . . . 8 (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
1310, 11, 12sylanbrc 583 . . . . . . 7 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0}))
14 dfn2 12394 . . . . . . 7 ℕ = (ℕ0 ∖ {0})
1513, 14eleqtrrdi 2842 . . . . . 6 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ)
16 dvdsle 16221 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵𝐴𝐵))
174, 15, 16syl2an2r 685 . . . . 5 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴𝐵𝐴𝐵))
188, 17mtod 198 . . . 4 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → ¬ 𝐴𝐵)
1918ex 412 . . 3 (𝐵 ∈ (0..^𝐴) → (𝐵 ≠ 0 → ¬ 𝐴𝐵))
2019necon4ad 2947 . 2 (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
21 dvds0 16182 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∥ 0)
224, 21syl 17 . . 3 (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0)
23 breq2 5093 . . 3 (𝐵 = 0 → (𝐴𝐵𝐴 ∥ 0))
2422, 23syl5ibrcom 247 . 2 (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴𝐵))
2520, 24impbid 212 1 (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {csn 4573   class class class wbr 5089  (class class class)co 7346  0cc0 11006   < clt 11146  cle 11147  cn 12125  0cn0 12381  cz 12468  ..^cfzo 13554  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-dvds 16164
This theorem is referenced by:  fzocongeq  16235
  Copyright terms: Public domain W3C validator