MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo0dvdseq Structured version   Visualization version   GIF version

Theorem fzo0dvdseq 15669
Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzo0dvdseq (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))

Proof of Theorem fzo0dvdseq
StepHypRef Expression
1 elfzolt2 13046 . . . . . . 7 (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴)
2 elfzoelz 13037 . . . . . . . . 9 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ)
32zred 12079 . . . . . . . 8 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℝ)
4 elfzoel2 13036 . . . . . . . . 9 (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ)
54zred 12079 . . . . . . . 8 (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℝ)
63, 5ltnled 10780 . . . . . . 7 (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
71, 6mpbid 235 . . . . . 6 (𝐵 ∈ (0..^𝐴) → ¬ 𝐴𝐵)
87adantr 484 . . . . 5 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → ¬ 𝐴𝐵)
9 elfzonn0 13081 . . . . . . . . 9 (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0)
109adantr 484 . . . . . . . 8 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0)
11 simpr 488 . . . . . . . 8 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
12 eldifsn 4683 . . . . . . . 8 (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
1310, 11, 12sylanbrc 586 . . . . . . 7 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0}))
14 dfn2 11902 . . . . . . 7 ℕ = (ℕ0 ∖ {0})
1513, 14eleqtrrdi 2904 . . . . . 6 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ)
16 dvdsle 15656 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵𝐴𝐵))
174, 15, 16syl2an2r 684 . . . . 5 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴𝐵𝐴𝐵))
188, 17mtod 201 . . . 4 ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → ¬ 𝐴𝐵)
1918ex 416 . . 3 (𝐵 ∈ (0..^𝐴) → (𝐵 ≠ 0 → ¬ 𝐴𝐵))
2019necon4ad 3009 . 2 (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
21 dvds0 15621 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∥ 0)
224, 21syl 17 . . 3 (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0)
23 breq2 5037 . . 3 (𝐵 = 0 → (𝐴𝐵𝐴 ∥ 0))
2422, 23syl5ibrcom 250 . 2 (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴𝐵))
2520, 24impbid 215 1 (𝐵 ∈ (0..^𝐴) → (𝐴𝐵𝐵 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  cdif 3881  {csn 4528   class class class wbr 5033  (class class class)co 7139  0cc0 10530   < clt 10668  cle 10669  cn 11629  0cn0 11889  cz 11973  ..^cfzo 13032  cdvds 15603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-dvds 15604
This theorem is referenced by:  fzocongeq  15670
  Copyright terms: Public domain W3C validator