![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzo0dvdseq | Structured version Visualization version GIF version |
Description: Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
fzo0dvdseq | ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzolt2 13646 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 < 𝐴) | |
2 | elfzoelz 13637 | . . . . . . . . 9 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℤ) | |
3 | 2 | zred 12671 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℝ) |
4 | elfzoel2 13636 | . . . . . . . . 9 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℤ) | |
5 | 4 | zred 12671 | . . . . . . . 8 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∈ ℝ) |
6 | 3, 5 | ltnled 11366 | . . . . . . 7 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
7 | 1, 6 | mpbid 231 | . . . . . 6 ⊢ (𝐵 ∈ (0..^𝐴) → ¬ 𝐴 ≤ 𝐵) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → ¬ 𝐴 ≤ 𝐵) |
9 | elfzonn0 13682 | . . . . . . . . 9 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐵 ∈ ℕ0) | |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ0) |
11 | simpr 484 | . . . . . . . 8 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
12 | eldifsn 4791 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℕ0 ∖ {0}) ↔ (𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0)) | |
13 | 10, 11, 12 | sylanbrc 582 | . . . . . . 7 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ (ℕ0 ∖ {0})) |
14 | dfn2 12490 | . . . . . . 7 ⊢ ℕ = (ℕ0 ∖ {0}) | |
15 | 13, 14 | eleqtrrdi 2843 | . . . . . 6 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℕ) |
16 | dvdsle 16258 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) | |
17 | 4, 15, 16 | syl2an2r 682 | . . . . 5 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → (𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵)) |
18 | 8, 17 | mtod 197 | . . . 4 ⊢ ((𝐵 ∈ (0..^𝐴) ∧ 𝐵 ≠ 0) → ¬ 𝐴 ∥ 𝐵) |
19 | 18 | ex 412 | . . 3 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 ≠ 0 → ¬ 𝐴 ∥ 𝐵)) |
20 | 19 | necon4ad 2958 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 → 𝐵 = 0)) |
21 | dvds0 16220 | . . . 4 ⊢ (𝐴 ∈ ℤ → 𝐴 ∥ 0) | |
22 | 4, 21 | syl 17 | . . 3 ⊢ (𝐵 ∈ (0..^𝐴) → 𝐴 ∥ 0) |
23 | breq2 5153 | . . 3 ⊢ (𝐵 = 0 → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0)) | |
24 | 22, 23 | syl5ibrcom 246 | . 2 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐵 = 0 → 𝐴 ∥ 𝐵)) |
25 | 20, 24 | impbid 211 | 1 ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∖ cdif 3946 {csn 4629 class class class wbr 5149 (class class class)co 7412 0cc0 11113 < clt 11253 ≤ cle 11254 ℕcn 12217 ℕ0cn0 12477 ℤcz 12563 ..^cfzo 13632 ∥ cdvds 16202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-dvds 16203 |
This theorem is referenced by: fzocongeq 16272 |
Copyright terms: Public domain | W3C validator |